LXXIX 1984

5

УДК 515.164 248

МАТЕМАТИКА

А. А. Огникян

Об одном обобщении оснащенного бордизма

(Представлено чл.-корр. АН Армянской ССР Р. А. Александряном 17/V 1984)

В работе обобщается понятие оснащенного бордизма (1) и приводится одно применение (теорема 6).

1. a-оснащенные бордизмы. Пусть $a=(a_1, a_2, \ldots, a_k; l)$ символ Шуберта, т. е. последовательность целых чисел, удовлетворяющих условням $1 \le a_1 < a_2 < \ldots < a_k \le k+l$, $l \ge 0$. Если $b=(b_1, b_2, \ldots, b_k, l)$, $c=(c_1, c_2, \ldots, c_k; l)$, то положим b > c, если существует t, что $b_l > c_l$ при $l \le t$ и $b_l > c_l$. Пусть $\xi=(tl\xi, P, X)$ k-мерное векторное расслоение t пространством расслоения $tl\xi$, базой X и проекцией P.

Будем говорить, что имеется a-оснащение $v=(v_1,v_2,\ldots,v_{k+l})$ расслоения ε , если имеется последовательность сечений v_1,v_2,\ldots,v_{k+l} такая, что для любой точки $x\in X$ можно найти символ $c=c(x)=(c_1,c_2,\ldots,c_k;l), c_l\leqslant a_i, i=1,2,\ldots,k$ такой, что векторы $v_{c_1}(x),\ldots,v_{c_k}(x)$ линейно-независимы, и для любого символа b>c векторы $v_{b_1}(x),v_{b_2}(x),\ldots,v_{b_k}(x)$ линейно-зависимы.

Пусть (tl;, P, X; v) и (tl;', P', X; v') два a-оснащенные расслоения. Будем их считать изоморфными, если существует изоморфизм $\varphi:(tl;$, P, $X) \rightarrow (tl;$ ', P', X) векторных расслоений, так что $\varphi(v_i) = v_l$, $i=1,\ 2,\ \ldots,\ k+l$. Если $f:X\to Y$ непрерывное отображение, то расслоение f^* ; снабжается индуцированным a-оснащением.

Символы $G_{k,l}$ и $\gamma^{k,l}$ будут обозначать соответственно многообразие Грассмана k-мерных подпространств в евклидовом пространстве R^{k+l} и его каноническое k-мерное векторное расслоение. Через S(a) обозначим многообразие Шуберта $\binom{2}{l}$, соответствующее символу a, через $\gamma(a)$ —ограничение $\gamma^{k,l}$ на $S(a) = G_{k,l}$. Через P_V обозначим ортогональное проектирование пространства R^{k+l} на подпространство l. В R^{k+l} зафиксируем некоторый базис $e_1, e_2, \ldots, e_{k+l}$ и определим сечения v_l расслоения $\gamma(a)$ формулой

$$v_i(V) = P_V(e_i), V \in S(a), i = 1, 2, ..., k+l.$$

Предложение 1.1. Последовательность сечений $v=(v_1, v_2, \ldots, v_{k-1})$ определяет а-оснащение расслоения $\gamma(a)$.

Теорема 1. Множество классов изоморфности всех а-оснащенных векторных расслоений над топологическим пространством X находится в взаимно-однозначном соответствии с множеством всех непрерывных отображений из X в S(a). Счетным оснащением k-мерного расслоения ξ назовем счетную последовательность $(v_1, v_2, ...)$ сечений v_i такую, что для любой точки $x \in X$ существует такой номер t = t(x), что $v_i(x) = 0$ при i > t и ранг системы $v_1(x)$, $v_2(x)$, ..., $v_i(x)$ равен k. Расслоение ε вместе с некоторым его счетным оснащением называется счетно-оснащенным расслоением.

Теорема 2. Множество классов изоморфности всех счетнооснащенных k-мерных векторных расслоений над X находится во взаимнооднозначном соответствии с множеством всех непрерывных отображений из X в $G_{k,\infty}$.

Понятия a-оснащенного подмногообразия и a-бордизма между такими подмногообразиями вводятся аналогично соответствующим классическим понятиям из (¹). Обозначим через $\Pi_n(a)$ множество классов a-бордантности всех n-мерных замкнутых гладко a-оснащенных гладких подмногообразий многообразия R^{n+h} . Стандартным образом (³,4) в $\Pi_n(a)$ вводится аддитивная групповая структура, строится гомоморфизм

$$\tau(n; a) : \tau_{n+k}(T_1^{\gamma}(a); \infty) \rightarrow \Pi_n(a).$$

Теорема 3. При $n+k \ge 1$ гомоморфизм $\neg (n; a)$ является изоморфизмом абелевых групп.

Символ Шуберта $E(a) = (1, a_1 + 1, a_2 + 1, \ldots, a_k + 1; l)$ будем называть надстройкой над символом a.

Пусть $\psi_{n+k}: R^{n+k} \to R^{n+k+1}$ линейное вложение, определяемое формулой $\psi_{n+k}(e_l) = e_{i+1}, i = 1, 2, \ldots, n+k$. Если (M, v) n-мерное a-оснащенное подмногообразие в R^{n+k} (v обозначает a-оснащение нормального расслоения), то определим E(a)-оснащение подмногообразия $\psi_{n+k}(M)$ формулой

$$E(v) = (u, v_1, v_2, \ldots, v_{n+k}), u(x) = e_1, x \in \psi_{n+k}(M).$$

Введем обозначение $E(M, v) = (\psi_{n+k}(M), E(v)).$

Будем называть (M, v) и (N, w) стабильно a-бордантными, если для некоторого m существуют такие $E^m(a)$ -бордантные подмногообразия (M', v') и (N', w'), что $(M', v') = E^i(M, v)$ и $(N', w') = E^i(N, w)$ для некоторых i и j.

Отношение стабильной a-бордантности—отношение эквивалентности. Множество классов эквивалентности $\Pi^s(a)$ снабжается структурой абелевой группы.

Теорема 4. Имеет место изоморфизм $\Pi_n^s(a) \cong \pi_{n+k}^s(T_{\gamma}(a))$.

Если $v_1, v_2, \ldots, v_{k-r}$ линейно-независимые сечения k-мерного нормального расслоения v подмногообразия M, то будем говорить, что имеется оснащение коразмерности r подмногообразия M.

Рассмотрим символ a = a(r, k, l) = (1, 2, ..., k-r, k-r+l+1, ..., k+l; l). Тогда $a = E^{k-r}(a')$, где a' = (l+1, l+2, ..., l+r; l), и $\gamma(a) = \gamma^{-l} \oplus l$ где θ тривнальное (k-r)-мерное расслоение. Так как $S(a') = G_{r,l}$, то S(a) гомеоморфно $G_{r,l}$. Поэтому $T\gamma(a)$ гомеоморфно $S^{k-r}(T\gamma^{r,l})$ и $\Pi_n(a) \cong \pi_{n+k}(S^{k-r}(T\gamma^{r,l}); \infty)$. Известно (2), что $T\gamma(a)$ (k-1)-связно. Если k > n+1, то $\Pi_{n+k}(S^{k-r}(T\gamma^{r,l}; \infty) \cong \pi_{n+r}^s(T\gamma^{r,l})$. При

l=0 имеем $\Pi_n(a)=\pi(S^n)$. Если l>0, то переходя к пределу при $l-\infty$ и используя теорему 2, можно доказать утверждение.

Теорема 5 Элементы группы — (Т могут быть представлены как классы бордизмов всех п-мерных замкнутых гладких подмногообразий с классом эквивалентности (по надстройке) гладких оснащений коразмерности г на нормальных расслоениях.

Можно несколько расширить запас подмногообразий с оснащением коразмерности r, рассматривая последовательности $v=(v_1, v_2, ..., v_{k-r})$ линейно-независимых гладких сечений v расслоения v при условии, что линейное проектирование системы v на нормальное расслоение v данного подмногообразия вдоль касательного расслоения v происходит без вырождения.

2. Связь между группами бордизмов коразмерности 0 и 1. Пусть М замкнутое ориентируемое п-мерное гладкое подмногообразие в Р^{п+к} v-оснащение коразмерности 1 нормального расслоения v. Тогда v=0 где подрасслоение θ патянуто на сечения $v_1,\ v_2,\ ...,\ v_{k-1},\ \xi$ одномерное тривнальное ортогональное дополнение к 0. Рассмотрим замкнутую ε -трубчатую окрестность v_{\bullet} подмиогообразия M в R^{n-k} . Положим $\theta = 1000, \xi_s = v_s \cap t \ell \xi$. При ε , достаточно малом, $v_s \theta_s$, ξ_s будут гладкими подмногообразнями в R^{n-k} . Обозначим через $\overline{\xi}$ нормальное расслоение подмногообразия 🗓, через 🖫 замкнутую э-трубчатую окрестность в в tls. Тогда 🗓 и = \$ и 🕏 подмногообразие в 🛼 Рассмотрим две тривиализации расслоения попределяемые сечениями $u_{ij} = 0, 1, 1, \dots$ где $\|w^0\| = \varepsilon$, $w^0(x) = -w^1(x)$, $x \in \theta_{\varepsilon}$. Через f' обозначим диффеоморфизм, сопоставляющий точке $x\in \mathcal{Y}_{\epsilon}$ конец вектора w'(x), отложенный из точки x. Положим $M^i=f^i(M),\ \theta^i=f^i(\theta_i),\$ тогда $\partial z_i=M^0_i\cup M_i,\ \partial z=0$ =0 . Касательное пространство к θ_{z} в точке $x\in M$ содержит векторы $v_i(x)$. Обозначим через $df'(v_i)$ сечение ограничения над M^i касательного расслоения подмногообразия 0, определяемого формулой

$$df'(v_i)(f'(x)) = (df'_i)_x(v_i(x)), x \in M.$$

Здесь $(df^l)_v$ обозначает дифференциал отображения в точке x. Возникает оснащение коразмерности 1 $df^l(v) = (df^l(v), \ldots, df^l(v_{k-1}))$ подмногообразия $M \subset \mathbb{R}^{n+k}$. Тогда подмногообразие $d \in \mathbb{R}^{n+k}$ также оснащается и через $df^l(v)$ обозначим соответствующее оснащение коразмерности 1. Ниже через [(M, v)] будем обозначать класс бордизмов оснащенного многообразия (M, v).

Предложение 2.1. Для достаточно малого ε и j=0,1 в группе $\pi_{n=1}^s(RP^*)$ выполняются тождества

$$[(M', df'(v))] = [(M, v)], \{(\partial \xi_t, df_t(v))\} = 0.$$

Па предложения следует, что 2[(M,v)]=0. Пусть отображение $F:S^1\to RP^\infty$ индуцировано каноническим вложением $T^{*1,0}_{\gamma^{1,0}}=1$ Ин-луцированный гомоморфизм $F:\pi^s_{n+1}(S^1)=\pi_{n+1}(RP^n)$ описывается так: элементу $[(M,\bar{v})]\in\pi^s_n(S^0)$, где $v=(v_1,v_2,...,v_k)$ оснащение коразмер-

ности 0, сопоставляется элемент $[(M, v)]_{L_{n+1}}(RP^*)$, где $v = (v_2, v_3, ..., v_k)$ оснащение коразмерности 1.

Теорема 6. При гомоморфизме забывания F_* образ группы $\pi^s(S^0)$ содержится в подгруппе элементов второго порядка группы $\pi^s(RP^\infty)$.

Ереванский государственный университет

Հ. Հ. ՕՀՆԻԿՅԱՆ

Հագեցված բուդիզմի մի ընդնանւացման մասին

Աշխատանքում ընդհանրացվում է հանգեցված բորդիզմի (') հասկացությունը։ Նախապես ներմուծվում է a- հագեցված վեկտորական շերտավորման գաղափարը, որտեղ a- ն Շուբերտի սիմվոլ է։ Տրված է (Թեորեմ 1) այդպիսի շերտավորումների տոպոլոգիական դասակարգում։ Դասական գաղափարների համանմանությամբ ներմուծվում են a- հագեցված ողորկ բազմակերպության և այդպիսի բազմակերպությունների a- բորդիզմի հասկացությունները։ Միննույն լափողականության, փակ, ողորկ a- հագեցված, ողորկ բազմակերպությունների (ստացիոնար) a- բորդիզմների խմբերի հաշվումը հանգեցվում է (Թեորեմներ 3, 4) հատուկ տարածությունների (ստացիոնար) հոմոտոպիական խմբերի հաշվմանը։ Ներմուծվում և ուսումնասիրվում է (Թեորեմ 5) r-կոչափականության բորդիզմի հասկացությունը։ Այն կիրառվում է (Թեորեմ 6) $\pi_n^*(S^0)$ խմբի կերպարը $\pi_{n+1}^*(RP^\infty)$ խմբում մի հոմոմորֆիզմի դեպքում նկարադրելու համար։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

¹ Л. С. Понтрягин, Гладкие многообразия и их приложения в теории гомотопии, Наука, М., 1976. ² Дж. Милнор, Дж. Сташеф, Характеристические классы, Мир, М., 1979. ³ М. Хирш, Дифференциальная топология, Мир, М., 1979. ⁴ Р. Стонг, Заметки по теории кобордизмов, Мир, М., 1973.