LXXIX 1984

СТРОИТЕЛЬНАЯ МЕХАНИКА

УДК 69.057.45

А. О. Саакян, Р. А. Котикян, А. С. Шахназарян

Исследование прочности и трещиностойкости железобетонных ядер жесткости многоэтажных зданий при горизонтальных нагрузках в зависимости от степени насыщения ствола поперечной арматурой

(Представлено чл.-корр. АН Армянской ССР М. 3. Симоновым 25/XII 1983)

Одним из основных направлений современного строительства является увеличение этажности гражданских зданий с применением ядер жесткости. Расчет таких сложных пространственных конструкций с учетом трещинообразования имеет большой практический и теоретический интерес. Методика расчета, предложенная в (1,2), была разработана для расчетной нагрузки. С увеличением внешних горизонтальных нагрузок развиваются деформации, имеют место трещины, не только нормальные к продольной оси ствола и косые в углах проемов, но и наклонные, оказывающие большое влияние на прочность ядра жесткости. Исследование прочности и трещинообразования ядер жесткости с проемами связано с необходимостью проведения большого числа экспериментов.

Настоящая работа посвящена экспериментальному исследованию на моделях прочности и трещинообразования ядер жесткости 16-этажных зданий в зависимости от поперечного армирования ствола и эталонных моделей кольцевого сечения.

Испытанные модели представляли собой жестко- заделанные в фундамент тонкостенные стволы постоянного замкнутого поперечного сечения с регулярно расположенными по высоте дверными проемами. Толщина стенки эталонных моделей кольцевого сечения и диаметр срединной поверхности моделей с проемами назначались из условия сохранения одинаковых площадей и моментов инерции сечений моделей с проемами и без них. При проектировании моделей принят метод простого механического подобия (3) с сохранением материалов оригинала (масштаб моделей—1/10, тяжелый бетон М-300, $R_{\rm m}^{\rm m}=17~{\rm MHa}$, арматура из стали класса A—III $R^{\rm m}=360~{\rm MHa}$).

Модели были испытаны на специальном стенде на поперечную нагрузку, изменяющуюся по высоте ствола по треугольному закону, в направлении, перпендикулярном плоскости одного из проемов (рис. 1).

Были испытаны 4 серии моделей, по две в каждой серии: модели без поперечного армирования (серия 1); модели, поперечное армирование которых осуществлено согласно требованиям СНиП II-В. 1-62 (серия 2); модели, поперечное армирование которых осуществлено согласно требованиям СНиП II-21-75 (серия 3); модели, в которых по-182

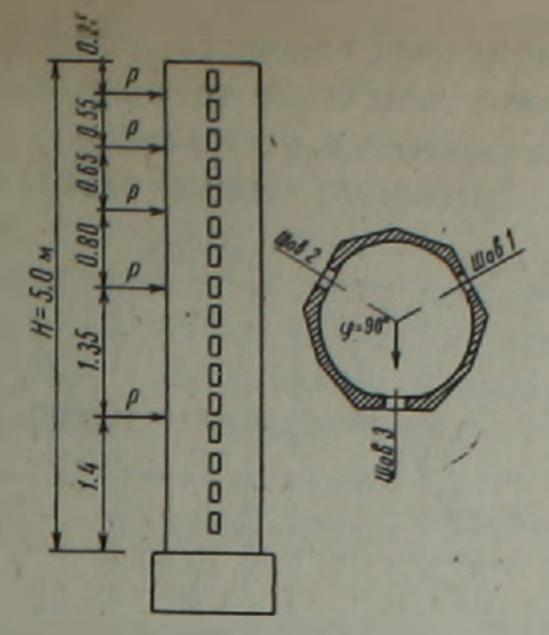


Рис. 1. Схема нагружения моделен и направление приложения внешней поперечной нагрузки

перечная нагрузка воспринимается только поперечной арматурой (серия 4). Тем самым серии моделей отличались друг от друга условным коэффициентом поперечного армирования µ (табл. 1).

На первом этапе, до образования трещин, модели нагружались ступенями по $0.05q_{p3}$ (q_{p3} —ожидаемая разрушающая нагрузка), а после трещинообразования и вплоть до разрушения — ступенями, равными $0.1q_{p3}$.

Таблица 1

Се-	Ипдекс модели	μx, %	Шаг хо- мутов, мм	Разрушающая на- грузка в долях от расчетной	Коэффициенты корреля- ционного уравнения	
					a	ь
1	M—111—1п M—111—2к	0		1.5	-0.01 -0.01	134 134
2	M—IV—1π M—IV—2κ	0.13	120	1.9	-0.01 -0.01	113 113
3	М—I—1к М—II—2	0,28	100	2.4 2.35	-0.01 -0.03	88 100
4	M-V-1π M-V-2κ	0.4	70	2.0	-0.01 -0.01	68 68

На рис. 2 приведены опытные значения максимальных напряжений в наиболее растянутой арматуре и сжатом бетоне (на уровне заделки) в зависимости от уровня нагружения, расчетные прямые, рассчитанные по формулам:

$$a_{a}^{\max} = R_{a}^{\infty} \cdot q/q_{p}; \quad a_{6}^{\max} = R_{np}^{u} \cdot q/q_{p}.$$
 (1)

Как видно, формулы (1) практически хорошо описывают экспериментальные кривые. Таким образом, имея прочностные характеристики бетона и арматуры, можно найти максимальные напряжения в растянутой арматуре и сжатом бетоне железобетонных ядер жесткости с

проемами. Разрушение моделей серии 1 (см. табл. 1) имело место при нагрузке 1,5 q_p . Первые наклонные трещины были обнаружены при поперечной нагрузке, близкой к расчетной (q_p) . При незначительном догружении ширина наклонных трещин резко возрастала, достигач

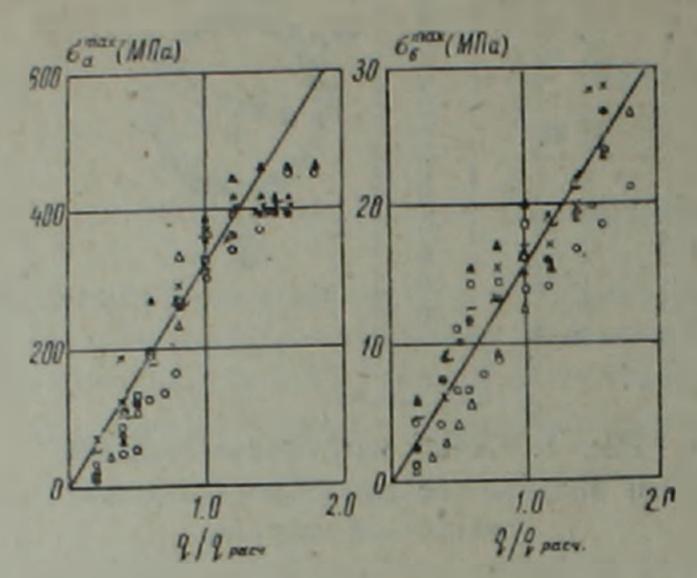


Рис. 2. Максимальные напряжения в растинутой арматуре и сжагом бетоне в зависимости от внешней нагрузки:

о—М-I-1; △—М-II-2; → —М-III-1п;

□—М-III-2к; •—М-IV-1п; ×—М-IV-2к;

▲—М-V-1п; ~—М-V-2к

1 мм, тогда как максимальная ширина раскрытия нормальных трещин (анорм) в простенках, косых трещин в углах проемов не превышала 0,25 мм. Модели разрушались по наклонным сечениям. И несмотря на то, что прочность бетона этих моделей была значительно больше, чем в моделях серии 3, их разрушение вследствие сопротивления продольной арматуры ствола поперечным силам, проявляющегося в виде нагельного эффекта, и сопротивления армированной сжатой зоны бетона происходило не при расчетной нагрузке, соответствующей началу образования наклонной трещины в стволе, а при более высоком уровие нагружения. В результате чрезмерного раскрытия наклонных трещин и среза сжатой зоны бетона по косой площадке имело место хрупкое разрушение.

Примерно аналогичная картина наблюдалась в моделях серии 2. В этом случае образовавшиеся наклонные трещины (при 0,6 $q_{\rm p3}$) интенсивно развивались, и при следующей ступени нагружения их максимальная ширина раскрытия превышала 1 мм. Разрушение этих моделей произошло по наклонным сечениям, а разрушающая нагрузка по сравнению с моделями серии 1 увеличилась на 20%. С дальнейшим увеличением условного коэффициента поперечного армирования ствола (модель М-I-Iк) ширина раскрытия наклонных трещин существенно уменьшилась и при уровне нагружения, соответствующем расчетной нагрузке (0,6 $q_{\rm p3}$), не превышала 0,3 мм (1). Ширина раскрытия нормальных трещин в простенках и косых трещин в углах проемов также не превышала 0,3 мм. Разрушение моделей серии 3 происходило при нагрузке, соответственно, 2,4 и 2,35 $q_{\rm p}$ по сечению, характеризующемуся наличием горизонтального участка, где продольная арма-

тура растянутой зоны достигает предела текучести, и сопряженного с пим наклонного участка, обусловленного превалированием касательных напряжений над нормальными. Как показали исследования, в моделях серии 4 по сравнению с моделью М-I-1к переармирование ствола поперечной арматурой не оказало существенного влияния на ширину раскрытия наклонных трещии (при нагрузках, близких к расчетной), а также на несущую способность конструкции. Представляло интерес исследовать влияние поперечного армирования ствола и ширину раскрытия нормальных трещин $a_1^{\text{порм}}$.

На рис. З приведены опытные значения $a^{\text{норм}}$ моделей с разным поперечным армированием, подвергшиеся статистической обработ-

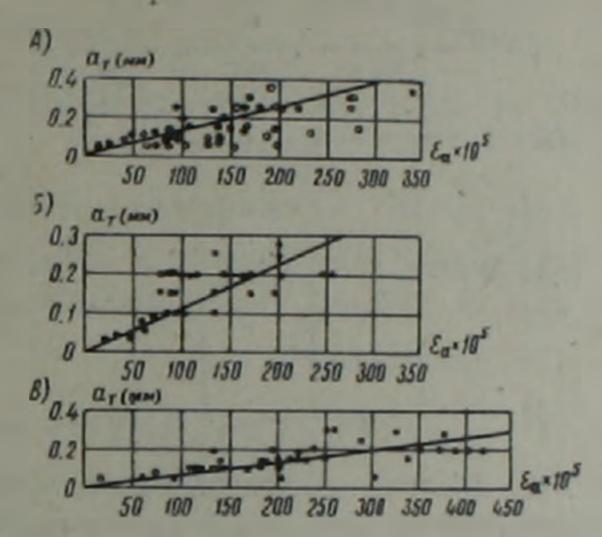


Рис. 3. Ширина раскрытия трешин, нормальных к продольной оси ствола моделей с разным поперечным армированием, в зависимости от деформаций продольной арматуры. А — модели серии 1, • — М-III-Iп; • — М-III-2к; Б—модель М—IV-Iп: В—модели серии 4, • — М-V-1п; • — М-V-2к

ке по методике, описанной в (5), и расчетные кривые, рассчитанные по линейному корреляционному уравнению

$$a^{\text{HOPM}} = a + b\varepsilon_a.$$
 (2)

Значения коэффициентов a и b приведены в табл. 1. На рис. 4 приведены зависимости $a^{\text{норм}} - \varepsilon_{\text{в}}$ для моделей ядра жесткости с проемами и эталонного кольцевого сечения, рассчитанные по корреляционному уравнению (2). Как видно из этих графиков, $a^{\text{норм}}$ моделей существенно зависят от степени насыщения ствола поперечной арматурой. С увеличением условного коэффициента поперечного армирования $a^{\text{порм}}$ уменьшается. Эту зависимость можно представить в следующем виде (см. рис. 4, δ):

$$a_{\tau}^{\text{HOPM}} = 0.01 + (134 - 165\mu_{x}) \epsilon_{a}.$$
 (3)

Полученное явление можно объяснить двумя факторами. Во-первых, при наличии поперечного армирования в растянутой зоне имеют место силы сцепления бетона и поперечной арматуры, в то время как без поперечного армирования бетон деформируется, находясь как бы в обойме. Увеличение поперечного армирования ствола, осуществляе-

мое путем уменьшения шага хомутов, приводит к изменению напря женно-деформированного состояния бетона растянутой зоны. Во-вто рых, поперечная арматура сопротивляется продольным силам анало гично тому, как продольная арматура сопротивляется поперечным силам при нагельном эффекте. На рис. 4, А приведена зависимость

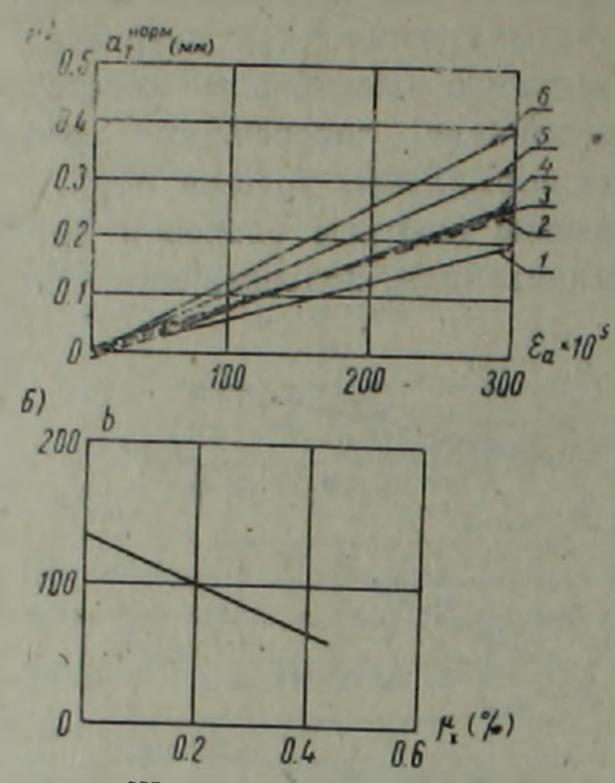


Рис. 4. Ширина раскрытия нормальных трещин моделей с разным поперечным армированием (A) и изменение коэффициента a в зависимости от условного процента поперечного армирования μ_x (\mathcal{E}): I—модели серии 4 ($\mu_x = 0.4$); 2—по СНиП II-21-75; 3—модель M-I-1 к ($\mu_x = 0.28$); 4—модель M-II-2 ($\mu_x = 0.28$); 5—модели серии 2 ($\mu_x = 0.13$); 6—модели серии 1 ($\mu_x = 0.13$); 6—модели серии 1 ($\mu_x = 0.13$).

аноры — €, рассчитанная согласно СНиП II-21-75. Как видно, эта зависимость с достаточной точностью совпадает с аналогичными зависимостями эталонных моделей кольцевого сечения без проемов и моделей ядра жесткости с проемами с одинаковым условным коэффициентом поперечного армирования $\mu_x = 0.28\%$. Следовательно, $a^{\text{норм}}$ железобетонного ядра жесткости с проемами можно рассчитывать согласно СНиП II-21-75, заранее приводя сечение ядра к эквивалентному кольцевому сечению без проемов. Определенный интерес представляет исследование влияния поперечного армирования ствола ядра жесткости на число нормальных и наклонных трещин. Первые наклон ные трещины (НТ) во всех испытанных моделях образуются при нагрузке $q/q_{p3} = 0.4 \div 0.43$. В моделях М-III-In и М-III-2к открывается сначала по одной трещине, тогда как в M-IV-III и M-V-2к — по две НТ. С увеличением внешней поперечной нагрузки до расчетной число НТ увеличивается и соответственно составляет пять, восемь, девять и десять трещин. При дальнейшем увеличении внешней нагрузки до значения разрушающей отсутствие поперечного армирования приводит к тому, что в стволах моделей открываются одиннадцать и двенадцать. а при слабом поперечном армировании четырнадцать НТ. Переарми-186

рование же ствола моделей поперечной арматурой приводит к открытию в стадии разрушения семнадцати НТ, однако максимальная ширина их составляет всего 3 мм, что намного меньше, чем в первых случаях. Таким образом можно заключить, что с увеличением количества поперечной арматуры в стволах ядер жесткости с проемами число НТ увеличивается, но максимальная ширина их раскрытия уменьшается. Количество поперечного армирования ствола моделей практически не оказывает влияния на число НТ.

Всесоюзный проектно-экспериментальный конструкторский и-технологический институт (ВПЭКТИ)

Ա. Հ. ՍԱՀԱԿՑԱՆ, Ռ. Ա. ԿՈՏԻԿՅԱՆ, Ա. Ս. ՇԱՀՆԱԶԱՐՅԱՆ

Բազմահարկ չենքերի երկաթրետոնյա կոշտության միջուկների ամբության և ճաքականգունության հետազոտումը հորիզոնական ուժերի ազդեցության ղեպքում կախված փողերի ընդլայնական ամբանավորման հագեցվածության աստիճանից

Աշխատանքում բերվում են 16 Հարկանի շենքերի կոշտության միջուկների ամրության և ճաքառաջացման հետազոտությունները կախված փողերի ընդլայնական ամրանավորումից։ Հետազոտությունները ցույց են տվել, որ կոնստրուկցիայի ձգված ամրանի և բետոնի ամրությունները կարելի է գտնել ները բեռնավորման ցանկացած Լտապում։

Հաստատված է նաև, որ երկաթետոնյա կոչտության միջուկների փողերի ընդլայնական ամրանավորումից կախված էսսպես փոխվում է նորմալ

Որքան շատ է ընդլայնական ամրանների քանակությունը, այնքան փոքր է նորմալ ճաքնրի լայնությունները։

ЛИТЕРАТУРА— ԳՐԱԿԱՆՈՒԹՅՈՒՆ

Рекомендации по проектированию монолитных железобетонных ядер жесткости многоэтажных зданий, возводимых в сейсмических районах, Ереван, 1981. — А. О. Саакян, Р. О. Саакян, С. Х. Шахназарян, Возведение здании и сооружений мето-дом подъема, Стройиздат, М., 1982. З А. Г. Назаров, О механическом подобии твер-дых деформируемых тел (к теории моделирования), Ереван, 1965. — А. Саакян, Ю. Х. Газарян, Р. А. Котикян, Изв. АН АрмССР. Техн. науки, т. 36, № 4 (1983). З А. К. Митропольский, Техника статистического вычисления, М., 1961.