LXXVIII 1984

УДК 539.376

МЕХАНИКА

Г. Ю. Ермоленко, В. В. Колокольчиков

О решении задач главной кубической теории вязкоупругости для неоднородно-стареющих тел

(Представлено академиком АН Армянской ССР Н. Х. Арутюняном 7/1 1983)

Рассмотрим класс материалов, для которых справедлива главная кубическая теория вязкоупругости (1.3). Если элементы вязкоупругого тела изготовлены в различные моменты времени, то возраст материала в таком теле неоднороден и зависит от пространственных координат (3). Пусть элемент с координатами г изготовлен в момент времени т*(r). Тогда краевая задача для такого неоднородно-стареющего вязкоупругого тела может быть описана уравнениями:

$$\sigma_{ij,j} + X_{i} = 0; \ \varepsilon_{ij} = \frac{1}{2} \{u_{i,j} + u_{j,i}\}; \ t_{*} \equiv t - \tau^{*}(r);$$

$$e_{ij}(t) = \frac{s_{ij}(t)}{2G(t_{*})} - \int_{\tau_{0}}^{t} K_{1}(t - \tau^{*}(r), \ \tau - \tau^{*}(r)) s_{ij}(\tau) d\tau +$$

$$+ \int_{\tau_{0}}^{t} K_{2}^{0}(t - \tau^{*}(r), \ \tau - \tau^{*}(r)) s_{mn}(\tau) s_{mn}(\tau) s_{ij}(\tau) d\tau;$$

$$\varepsilon_{ii}(t) = \frac{\sigma_{ii}(t)}{3K(t_{*})} - \int_{\tau_{0}}^{t} K_{1}(t - \tau^{*}(r), \ \tau - \tau^{*}(r)) \sigma_{ii}(\tau) d\tau;$$

$$\sigma_{ij}(t) n_{j} = P_{i}(t), \ x \in S_{s}; \ u_{i} = u_{i}^{0}(t), \ x \in S_{u}.$$

$$(1)$$

Здесь σ_{ij} , ε_{ij} —компоненты тензоров напряжений и деформаций, X_i , u_i —компоненты массовых сил и вектора перемещений; s_i , e_{ij} —компоненты девиаторов напряжений и деформаций: G(t), K(t)—сдвиговой и объемный модули; P_i —поверхностные силы, заданные на поверхности S_i , а u_i^0 —перемещения, заданные на поверхности S_i , $K_i(t)$ — $\tau^*(r)$, $\tau = \tau^*(r)$, $K_i(t)$ — $\tau^*(r)$)—ядра интегральных операторов.

Определяющие соотношения теории вязкоупругости для неоднородно-стареющих тел в линейной области описываются уравнениями Н. Х. Арутюняна (4);

$$e_{ij}(t) = \frac{s_{ij}(t)}{2G(t_*)} - \int_{-\tau}^{t} K_1(t-\tau^*(r), \tau-\tau^*(r))s_{ij}(\tau)d\tau,$$

$$s_{II}(t) = \frac{\sigma_{II}(t)}{3K(t_*)} - \int K_3(t - \tau^*(r), \tau - \tau^*(r)) \sigma_{II}(\tau) d\tau. \tag{2}$$

Здесь (4) $K_1(t-\tau^*(r), \tau-\tau^*(r)) = \frac{1}{2} \frac{\partial}{\partial \tau} [1/G(t_*) + \omega(t-\tau^*(r), \tau-\tau^*(r))];$ $\omega(t-\tau^*(r), \tau-\tau^*(r))$ —мера ползучести на сдвиг. Формулы (2) с такими ядрами разрешимы в квадратурах, т. е. (4):

$$s_{ij}(t) = 2G(t_*)e_{ij}(t) + \int_{\tau}^{t} \operatorname{Res}_{\mathbf{1}}(t - \tau^*(r), \tau - \tau^*(r))e_{ij}(\tau)d\tau;$$

$$s_{ii}(t) = 3K(t_*)s_{ii}(t) + \int_{\tau}^{t} \operatorname{Res}_{\mathbf{3}}(t - \tau^*(r), \tau - \tau^*(r))s_{ii}(\tau)d\tau, \tag{3}$$

Здесь

$$\operatorname{Res}_{1}(t-\tau^{*}(r), \tau-\tau^{*}(r)) = -\frac{\partial}{\partial \tau} \left[G(\tau-\tau^{*}(r)-\gamma\varphi(\tau-\tau^{*}(r)) \times G^{*}(\tau-\tau^{*}(r)) \exp(\eta(\tau-\tau^{*}(r))) \int_{-r(r)}^{r-r(r)} \exp(-\eta(z)) dz \right],$$

причем

$$\eta(\tau - \tau^*(r)) = \int_{-\tau}^{\tau^*} \left[\gamma(1 + \varphi(\tau - \tau^*(r))G(\tau - \tau^*(r)) - \frac{G'(\tau - \tau^*(r))}{G(\tau - \tau^*(r))} \right] d\tau.$$

Запишем (2) в виде

$$e_{ij}(t) = -\int_{-\infty}^{t} \left[K_{1}(t - \tau^{*}(r), \tau - \tau^{*}(r)) - \frac{\delta(t - \tau)}{2G(t_{*})} \right] s_{ij}(\tau) d\tau =$$

$$= \int_{0}^{\infty} K_{1}^{0}(t - \tau^{*}(r), \tau - \tau^{*}(r)) s_{il}(\tau) d\tau,$$

$$\varepsilon_{il}(t) = \int_{-\infty}^{t} \left[\frac{\delta(t - \tau)}{3K(t - \tau^{*}(r))} - K_{3}(t - \tau^{*}(r), \tau - \tau^{*}(r)) \right] s_{il}(\tau) d\tau =$$

$$= \int_{0}^{\infty} K_{3}^{0}(t - \tau^{*}(r), \tau - \tau^{*}(r)) s_{il}(\tau) d\tau, \qquad (4)$$

Здесь ядра K_1^0 и K_3^0 предполагаются равными нулю вне интервала интегрирования $\tau_0 \div t$.

Представим (3) следующим образом:

$$s_{ij} = \int_{\tau_{i}}^{t} [\text{Res}_{1}(t-\tau^{*}(r), \tau-\tau^{*}(r)) + 2G(t_{*})\delta(t-\tau)]e_{ij}(\tau)d\tau =$$

$$= \int_{0}^{t} \operatorname{Res}_{1}(t-\tau^{*}(r), \tau-\tau^{*}(r))e_{ij}(\tau)d\tau;$$

$$\sigma_{ii}(t) = \int_{\tau_{0}}^{t} \left[\operatorname{Res}_{3}(t-\tau^{*}(r), \tau-\tau^{*}(r)) + K(t_{*})\delta(t-\tau)\right]\varepsilon_{ii}(\tau)d\tau =$$

$$= \int_{0}^{t} \operatorname{Res}_{3}^{0}(t-\tau^{*}(r), \tau-\tau^{*}(r))\varepsilon_{ii}(\tau)d\tau, \qquad (5)$$

где ядра Resi и-Resa равны пулю вне интервала $\tau_0 \div t$. Из равенств (4) и (5) следует:

$$\int_{0}^{\infty} K_{3}^{0}(t-\tau^{*}(r), \tau-\tau^{*}(r)) \operatorname{Res}_{1}^{0}(\tau-\tau^{*}(r), \tau'-\tau^{*}(r)) d\tau = \delta(t-\tau'),$$

$$\int_{0}^{\infty} K_{3}^{0}(t-\tau^{*}(r), \tau-\tau^{*}(r)) \operatorname{Res}_{3}^{0}(\tau-\tau^{*}(r), \tau'-\tau^{*}(r)) d\tau = \delta(t-\tau'). \tag{6}$$

Здесь $\delta(t-\tau')$ —дельта-функция Дирака.

Теорема 1. Краевая задача (1) с определяющими соотношениями

$$e_{ii}(t) = \int_{0}^{\infty} K_{1}^{s}(t - \tau^{*}(r), \tau - \tau^{*}(r)) s_{ii}(\tau) d\tau + \int_{0}^{\infty} K_{2}^{s}(t - \tau^{*}(r), \tau - \tau^{*}(r)) s_{mn}(\tau) \times$$

$$\times s_{mn}(\tau)s_{lj}(\tau)d\tau; \ \varepsilon_{li}(t) = \int_{0}^{\infty} K_{3}(t-\tau^{*}(r), \ \tau-\tau^{*}(r))s_{li}(\tau)d\tau \tag{7}$$

интегральным преобразованием с ядром $Res^{0}(\tau'-\tau^{*}(r), t-\tau^{*}(r))$ при условии, что выполняются равенства.

$$K_2^0(t-\tau^*(r), \tau-\tau^*(r)) = K_2'(\tau-\tau^*(r))K_1'(t-\tau^*(r), \tau-\tau^*(r));$$

$$K_3^0(t-\tau^*(r), \tau-\tau^*(r)) = K_3'(\tau-\tau^*(r))K_1'(t-\tau^*(r), \tau-\tau^*(r)),$$

сводится к задаче для неоднородного кубически нелинейного упругого материала.

Доказательство. Умножая определяющее соотношение (7) на Resi($\tau'-\tau^*(r)$, $t-\tau^*(r)$), интегрируя по времени t, согласно (6) будем иметь:

$$e_{ij}^{(*)}(\tau') = s_{ij}(\tau') + K_2'(\tau' - \tau^*(r)) s_{mn}(\tau') s_{mn}(\tau') s_{ij}(\tau');$$

$$\varepsilon_{ij}^{(*)}(\tau') = K_3'(\tau' - \tau^*(r)) s_{ii}(\tau'). \tag{8}$$

Преобразуя краевые условия в перемещениях и соотношения Коши:

$$\varepsilon_{ij}^{(r)}(\tau') = \int \varepsilon_{ij}(t) \operatorname{Res}_{i}^{0}(\tau') \frac{1}{2} \left\{ u_{i,j}^{(r)} + u_{j,i}^{(r)} \right\},$$

$$\varepsilon_{ij}^{(r)}(\tau') = \int \varepsilon_{ij}(t) \operatorname{Res}_{i}^{0}(\tau') \frac{1}{2} \left\{ u_{i,j}^{(r)} + u_{j,i}^{(r)} \right\},$$

$$\varepsilon_{ij}^{(r)}(\tau') = \int \varepsilon_{ij}(t) \operatorname{Res}_{i}^{0}(\tau') \frac{1}{2} \left\{ u_{i,j}^{(r)} + u_{j,i}^{(r)} \right\},$$

$$u_{i,j}^{(\bullet)} = \int_{0}^{t} u_{i,j}(t) \operatorname{Res}_{0}^{1}(\tau' - \tau^{*}(r), t - \tau^{*}(r)) dt, \tag{9}$$

в образах преобразований будем иметь краевую задачу для неодно-родно-стареющего упругого кубически нелинейного материала:

$$\begin{aligned}
\sigma_{i,i} + X_{i} &= 0; \quad \varepsilon_{i} = \frac{1}{2} \{u(\cdot) + u(\cdot)\}; \\
e_{i,j}^{(*)}(\tau') &= s_{i,j}(\tau') + K_{i}(\tau' - \tau^{*}(r)) s_{mn}(\tau') s_{mn}(\tau') s_{i,j}(\tau); \\
\varepsilon_{i,j}^{(*)}(\tau') &= K_{3}(\tau' - \tau^{*}(r)) s_{i,l}(\tau'); \\
\sigma_{i,j} n_{j} &= P_{i}, \quad x \in S_{i}; \quad u^{(*)} &= u^{0(*)}, \quad x \in S_{u}.
\end{aligned} \tag{10}$$

В качестве примера рассмотрим задачу об изгибе кубически нелинейной неоднородно-стареющей балки. Балка изгибается противоположными моментами $\pm M(t)$, приложенными к ее торцам. Боковая поверхность свободна от нагрузок. Краевая задача для данного случая в соответствии с теоремой 1 определяется формулами (10). Согласно (10) решения — напряжения исходной вязкоупругой задачи и фиктивно упругой задачи (10) совпадают. Поэтому разница между вязкоупругой задачей (1) и фиктивно упругой задачей (10) будет заключаться только в деформациях и перемещениях.

Уравнения равновесия и краевые условия задачи (10) и исходной вязкоупругой задачи будут удовлетворены, если решения выбраны в виде

$$\sigma_{xy} = \sigma_{xz} = \sigma_{yy} = \sigma_{yz} = \sigma_{zz} = 0; \quad \sigma_{xx} = -\frac{M(t)}{J} y. \tag{11}$$

Здесь Ј--момент иперции поперечного сечения. Из (11) имеем

$$\varepsilon_{xx} = -\frac{M(t)y}{JE(t-\tau^{*}(r))} + \int_{\tau_{0}}^{t} y \frac{M(t)}{J} K_{E}(t-\tau^{*}(r), \tau-\tau^{*}(r)) d\tau + \int_{\tau_{0}}^{t} \frac{M^{3}(\tau)}{J^{3}} y^{3} K_{2E}^{0}(t-\tau^{*}(r), \tau-\tau^{*}(r)) d\tau.$$
(12)

Уравнения совместности деформаций выполняются приближенно. На рис. 1 и 2 представлены графики зависимостей ε_{xx} от x и у для различных моментов нагружения и наблюдения в случае $M(t)=M_0$, причем $M_0/J=1$ кгс/см². Функция $K_E(t-\tau^*(r),\ \tau^*-\tau^*(r))$ согласно (3) равна $\frac{\partial}{\partial \tau}\{1/E(\tau-\tau^*(r))+C(t,\ \tau,\ \tau^*(r))\}$, причем $E(\tau-\tau^*(r))=E_0\{1-\exp[-\varphi(\tau-\tau^*(r))]\}$, а $C(t,\ \tau,\ \tau^*(r))=\{C_1+A_1/[\tau-\tau^*(r)]\}\{1-\exp[-\gamma(t-\tau)]\}$. Постоянные для бетона составляют: $C_1\simeq 0.975 \cdot 10^{-5} (\text{кгс/см²})^{-1}$, $A_1=4.62 \cdot 10^{-5} \text{ сут./(кгс/см²})$,

 $\gamma = 0.03 \text{ cyt.}^{-1}$, $E_0 = 2.6 \cdot 10^5 \text{kgc/cm}^2$, $\beta = 0.206 \text{ cyt.}^{-1}$

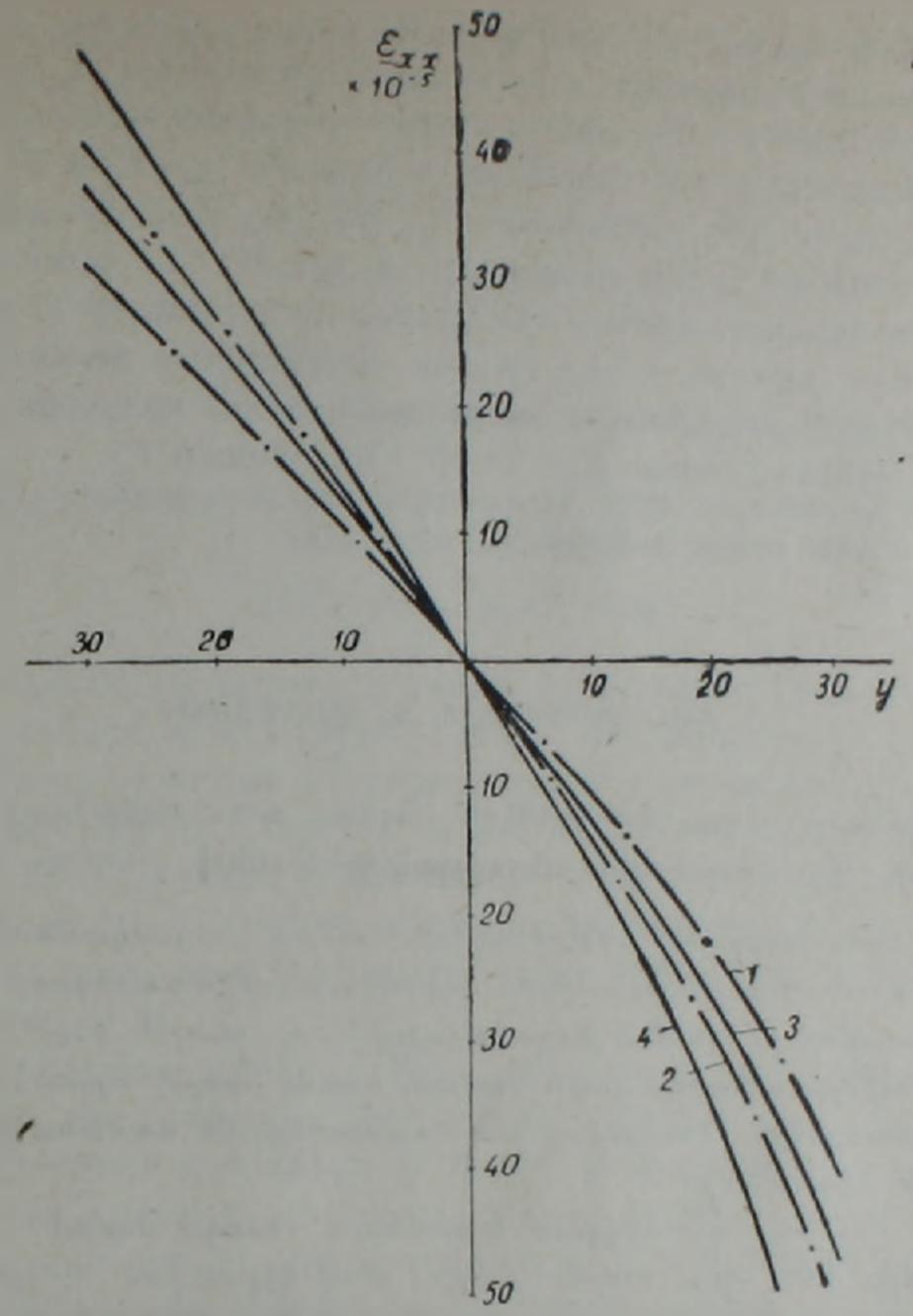


Рис. 1. График деформации балки ε_{xx} в зависимости от у для $x=0(-\cdot-)$, x=5м $(-\cdot)$; 1-x=0, $\tau_0=20$, t=50 сут.; 2-x=0, $\tau_0=20$, t=80 сут.; 4-x=500 см., $\tau_0=20$, t=80 сут.; 4-x=500 см., $\tau_0=20$, t=80 сут.

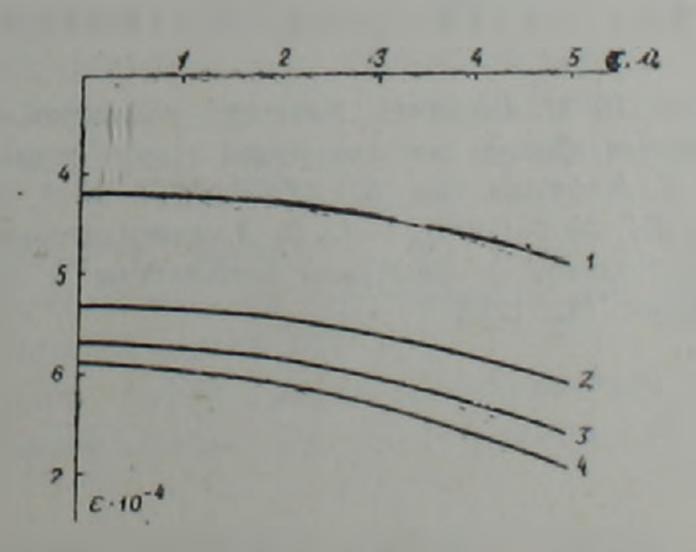


Рис. 2. График деформации балки ε_{xx} в зависимости от x для y=30 см и момента, нагружения 20 суток: $t-\tau_0=20$, t=50 сут; y=30 см; $2-\tau_0=20$, t=80 сут., y=30 см.; $4-\tau_0=20$ t=140 сут., y=30 см.; $4-\tau_0=20$

Длина балки составляет 5 м, а сечение — квадрат со стороной 60 см. Балка изготовляется с постоянной скоростью за 10 дней, наращиваясь по оси x. На рис. 1 изображена зависимость деформации ε_{xx} от координаты y для моментов загружения $\tau_0 = 20$ и 50 суток для различных моментов наблюдения t. На рис. 2 изображены зависимости деформации ε_{xx} от координаты x для тех же моментов нагружения и наблюдения, причем при растяжении согласно (5) считается, что связь $s-\varepsilon$ линейна, а при сжатии — кубически нелинейна. Коэффициент пропорциональности ядра кубически нелинейного и ядра линейного выбраи равным $K'=3\cdot 10^{-4}$ по данным (5).

Куйбышевский государственный университет

Գ. ՅՈՒ, ԵՐՄՈԼԵՆԿՈ, Վ. Վ. ԿՈԼՈԿՈԼՉԻԿՈՎ

Աննամասեռ ծեռացող մառմինների նամար առաձգամածուցիկության գլխավոր խորանարդային տեսության խնդիրների լուծման մասին

Անհամասեռ ծերացող մարմինների համար առաձգամածուցիկության գլխավոր խորանարդային տեսության եզրային խնդիրը ինտեզրալ ձևափոխության կիրառումով բերվում է խորանարդային ոչ գծային կեղծ առաձգականության նյութերի այնպիսի դասի համար, որտեղ որոշիչ արտահայտությունների օպերատորների կորիզները բազմապատկելի են ժամանակի միևնույն ֆունկցիայի նկատմամբ։

Որպես օրինակ դիտարկվում է բետոնյա հեծանի ծռման վերաբերյալ խնդունվում է, որ հեծանի նյութը ձդման ժամանակ իրեն պահում է որպես դծային, իսկ սեղման ժամանակ՝ որպես ոչ դծային։

ЛИТЕРАТУРА— ԳՐԱԿԱՆՈՒԹՅՈՒՆ

А. А. Ильюшин, П. М. Огибалов, Механика полимеров, № 3, 1965. 2 А. А. Ильюшин, Б. Е. Победря, Основы математической теории термовязкоупругости, Наука. М. 1970. 3 Н. Х. Арутюнян, Изв. АН СССР. МТТ, № 3, 1976. 4 Н. Х. Арутюнян, ДАН СССР, т. 231, № 3 (1976). 5 С. В. Александровский, Расчет бетонных и железобетонных конструкции на изменение температуры и влажности с учетом ползучести, Стройнздат, М., 1973.