LXXVIII 1984

МАТЕМАТИКА

УДК 517 984

И. Г. Хачатрян

О некоторых решениях уравнения нелинейной струны

(Представлено академиком АН Армянской ССР М. М. Джрбашяном 25/II 1983)

Рассмотрим систему дифференциальных уравнений

$$a\frac{\partial u}{\partial t} = 2\frac{\partial w}{\partial x}, \quad a\frac{\partial w}{\partial t} = \frac{1}{6}\frac{\partial^3 u}{\partial x^3} - \frac{1}{3}\frac{\partial u^2}{\partial x},$$

$$-\infty < t, \ x < \infty.$$
(1)

где $a \neq 0$ —вещественное число. Очевидно, что систему (1) можно свести к дному уравнению

$$3a^2 \frac{\partial^2 u}{\partial t^2} = \frac{\partial^4 u}{\partial x^4} - 2\frac{\partial^2 u^2}{\partial x^2}.$$
 (2)

При помощи подстановки u(t, x) = c(t, x) + b уравнение (2) перепишем в виде •

$$3a^2 \frac{\partial^2 v}{\partial t^2} + 4b \frac{\partial^2 v}{\partial x^2} = \frac{\partial^4 v}{\partial x^4} - 2c \frac{\partial^2 v^2}{\partial x^2}.$$
 (3)

При $a^2 = \frac{4}{3}$, b = -1, $c = -\frac{3}{2}$ (3) совпадает с уравнением нели-

нейной струны (1), а при $a^2 = \frac{1}{2}$ — $\frac{1}{2}$ — $\frac{3}{2}$ мы получим рассмотренное в (2) уравнение Буссинеска.

Согласно результатам работы (1), если ядро $F(t; x, \xi)$ ($-\infty < t, x, \xi < \infty$) удовлетворяет уравнениям

$$\frac{\partial^3 F}{\partial x^3} + \frac{\partial^3 F}{\partial \xi^3} = 0, \qquad \frac{a}{i} \frac{\partial F}{\partial t} + \frac{\partial^2 F}{\partial x^2} - \frac{\partial^2 F}{\partial \xi^2} = 0, \tag{4}$$

и, кроме того, при любых фиксированных t и x относительно функции $K(t,x,\xi)$ ($\xi > x$) разрешимо интегральное уравнение (аналог уравнения Гельфанда—Левитана—Марченко)

$$K(t; x, \xi) + F(t; x, \xi) + \int K(t; x, \eta) F(t; \eta, \xi) d\eta = 0,$$
 (5)

то пара функций u(t, x) и w(t, x), определенных по формулам

$$u(t, x) = -3 \left[\frac{\partial}{\partial x} K(t; x, \xi) + \frac{\partial}{\partial \xi} K(t; x, \xi) \right]_{\xi = x}, \tag{6}$$

$$w(t, x) = 3t \left\{ K(t; x, \xi) \left[\frac{\partial}{\partial x} K(t; x, \xi) + \frac{\partial}{\partial \xi} K(t; x, \xi) \right] + \frac{1}{2} \frac{\partial^2}{\partial x^2} K(t; x, \xi) - \frac{1}{2} \frac{\partial^2}{\partial \xi^2} K(t; x, \xi) \right\}$$
(7)

является решением системы уравнений (1).

В работе $(^1)$ рассматриваются вырожденные ядра $F(t; x, \xi)$, удовлетворяющие указанным выше условиям (см. в связи с этим также работу $(^2)$).

В настоящей заметке указывается класс удовлетворяющих уравнениям (4) невырожденных эрмитовых ядер $F(t; x, \xi)$ ($F(t; x, \xi) = F(t; \xi, x)$), при которых разрешимо интегральное уравнение (5). При этом определенные по формулам (6) и (7) решения системы (1) вещественны и убывают при $x \to +\infty$.

С этой целью удобно ввести обозначения

$$K_0(t; x, \xi) = K(t; x, x+\xi),$$

$$G(t, x; \eta, \xi) = F(t; x+\eta, x+\xi),$$

$$-\infty < t, x < \infty, 0 < \eta, \xi < \infty,$$

и привести соотпошения (4)—(7) к виду

$$\frac{\partial^3 G}{\partial \eta^3} + \frac{\partial^3 G}{\partial \xi^3} = 0, \qquad \frac{a}{i} \frac{\partial G}{\partial t} + \frac{\partial^2 G}{\partial \eta^2} - \frac{\partial^2 G}{\partial \xi^2} = 0, \tag{8}$$

$$K_0(t; x, \xi) + G(t, x; 0, \xi) + \int_0^\infty K_0(t; x, \eta) G(t, x; \eta, \xi) d\eta = 0,$$
 (9)

$$u(t, x) = -3 \frac{\partial}{\partial x} K_0(t; x, 0), \tag{10}$$

$$w(t, x) = 3i \left[K_0(t; x, 0) \frac{\partial}{\partial x} K_0(t; x, 0) + \frac{1}{2} \frac{\partial^2}{\partial x^2} K_0(t; x, 0) - \frac{\partial^2}{\partial x \partial z} K_0(t; x, z) \right]$$

$$(11)$$

Пусть $S(\lambda)$ ($-\infty < \lambda < \infty$)—дважды непрерывно дифференцируемая финитиая функция, причем S(0)=0. Рассмотрим вместе с этой функцией четыре конечных набора положительных чисел

$$\lambda_1 < \lambda_2 < \ldots < \lambda_n; \quad N_1, \quad N_2, \quad \ldots N_n;$$
 $\mu_1 < \mu_2 < \ldots < \mu_m; \quad M_1, \quad M_2, \quad \ldots, \quad M_m.$

Ядро $G(t, z; \eta, \xi)$ определим по формуле

$$G(t,z;\eta,\xi) = \int_{0}^{\infty} S(\lambda) \exp\left\{\frac{\lambda}{2} \left[(\sqrt{3} - 3i) \frac{\lambda t}{a} - (\sqrt{3} + 3i)z - (\sqrt{3} + i)\eta - 2i\xi \right] \right\} d\lambda + C(\lambda) \left\{ \frac{\lambda}{2} \left[(\sqrt{3} - 3i) \frac{\lambda t}{a} - (\sqrt{3} + 3i)z - (\sqrt{3} + i)\eta - 2i\xi \right] \right\} d\lambda + C(\lambda) \left\{ \frac{\lambda}{2} \left[(\sqrt{3} - 3i) \frac{\lambda t}{a} - (\sqrt{3} + 3i)z - (\sqrt{3} + i)\eta - 2i\xi \right] \right\} d\lambda + C(\lambda) \left\{ \frac{\lambda}{2} \left[(\sqrt{3} - 3i) \frac{\lambda t}{a} - (\sqrt{3} + 3i)z - (\sqrt{3} + i)\eta - 2i\xi \right] \right\} d\lambda + C(\lambda) \left\{ \frac{\lambda}{2} \left[(\sqrt{3} - 3i) \frac{\lambda t}{a} - (\sqrt{3} + 3i)z - (\sqrt{3} + i)\eta - 2i\xi \right] \right\} d\lambda + C(\lambda) \left\{ \frac{\lambda}{2} \left[(\sqrt{3} - 3i) \frac{\lambda t}{a} - (\sqrt{3} + 3i)z - (\sqrt{3} + i)\eta - 2i\xi \right] \right\} d\lambda + C(\lambda) \left\{ \frac{\lambda}{2} \left[(\sqrt{3} - 3i) \frac{\lambda t}{a} - (\sqrt{3} + 3i)z - (\sqrt{3} + i)\eta - 2i\xi \right] \right\} d\lambda + C(\lambda) \left\{ \frac{\lambda}{2} \left[(\sqrt{3} - 3i) \frac{\lambda t}{a} - (\sqrt{3} + 3i)z - (\sqrt{3} + i)\eta - 2i\xi \right] \right\} d\lambda + C(\lambda) \left\{ \frac{\lambda}{2} \left[(\sqrt{3} - 3i) \frac{\lambda t}{a} - (\sqrt{3} + 3i)z - (\sqrt{3} + i)\eta - 2i\xi \right] \right\} d\lambda + C(\lambda) \left\{ \frac{\lambda}{2} \left[(\sqrt{3} - 3i) \frac{\lambda t}{a} - (\sqrt{3} + 3i)z - (\sqrt{3} + i)\eta - 2i\xi \right] \right\} d\lambda + C(\lambda) \left\{ \frac{\lambda}{2} \left[(\sqrt{3} - 3i) \frac{\lambda t}{a} - (\sqrt{3} + 3i)z - (\sqrt{3} + i)\eta - 2i\xi \right] \right\} d\lambda + C(\lambda) \left\{ \frac{\lambda}{2} \left[(\sqrt{3} - 3i) \frac{\lambda t}{a} - (\sqrt{3} + 3i)z - (\sqrt{3} + i)\eta - 2i\xi \right] \right\} d\lambda + C(\lambda) \left\{ \frac{\lambda}{2} \left[(\sqrt{3} - 3i) \frac{\lambda t}{a} - (\sqrt{3} + 3i)z - (\sqrt{3} + i)\eta - 2i\xi \right] \right\} d\lambda + C(\lambda) \left\{ \frac{\lambda}{2} \left[(\sqrt{3} - 3i) \frac{\lambda t}{a} - (\sqrt{3} + 3i)z - (\sqrt{3} + i)\eta - 2i\xi \right] \right\} d\lambda + C(\lambda) \left\{ \frac{\lambda}{2} \left[(\sqrt{3} - 3i) \frac{\lambda t}{a} - (\sqrt{3} + 3i)z - (\sqrt{3} + i)\eta - 2i\xi \right] \right\} d\lambda + C(\lambda) \left\{ \frac{\lambda}{2} \left[(\sqrt{3} - 3i) \frac{\lambda t}{a} - (\sqrt{3} + 3i)z - (\sqrt{3} + i)\eta - 2i\xi \right] \right\} d\lambda + C(\lambda) \left\{ \frac{\lambda}{2} \left[(\sqrt{3} - 3i) \frac{\lambda t}{a} - (\sqrt{3} + 3i)z - (\sqrt{3} + i)\eta - 2i\xi \right] \right\} d\lambda + C(\lambda) \left\{ \frac{\lambda}{2} \left[(\sqrt{3} - 3i) \frac{\lambda t}{a} - (\sqrt{3} + 3i)z - (\sqrt{3} + i)\eta - 2i\xi \right] \right\} d\lambda + C(\lambda) \left\{ \frac{\lambda}{2} \left[(\sqrt{3} - 3i) \frac{\lambda t}{a} - (\sqrt{3} + 3i)z - (\sqrt{3} +$$

$$+ \int_{0}^{\infty} \overline{S}(\lambda) \exp\left\{\frac{\lambda}{2} \left[(\sqrt{3} + 3i) \frac{\lambda}{a} - (\sqrt{3} - 3i)z + 2i\eta - (\sqrt{3} - i)\xi \right] \right\} d\lambda +$$

$$+\int_{0}^{\infty} 2\pi |S(\lambda)|^{2} \exp\left\{\frac{\lambda}{2}\left[2\sqrt{3}\left(\frac{\lambda t}{a}-z\right)-(\sqrt{3}+i)\eta-(\sqrt{3}-i)\xi\right]\right\} d\lambda + \\
+\int_{-\infty}^{0} S(\lambda) \exp\left\{\frac{\lambda}{2}\left[-(\sqrt{3}+3i)\frac{\lambda t}{a}+(\sqrt{3}-3i)z+(\sqrt{3}-i)\eta-2i\xi\right]\right\} d\lambda + \\
+\int_{-\infty}^{0} \overline{S}(\lambda) \exp\left\{\frac{\lambda}{2}\left[-(\sqrt{3}-3i)\frac{\lambda t}{a}+(\sqrt{3}+3i)z+2i\eta+(\sqrt{3}+i)\xi\right]\right\} d\lambda + \\
+\int_{-\infty}^{0} 2\pi |S(\lambda)|^{2} \exp\left\{\frac{\lambda}{2}\left[-2\sqrt{3}\left(\frac{\lambda t}{a}-z\right)+(\sqrt{3}-i)\eta+(\sqrt{3}+i)\xi\right]\right\} d\lambda + \\
+\sum_{n=1}^{\infty} N_{n} \exp\left\{\frac{\lambda_{n}}{2}\left[2\sqrt{3}\left(\frac{\lambda_{n}t}{a}-z\right)-(\sqrt{3}+i)\eta-(\sqrt{3}-i)\xi\right]\right\} + \\
+\sum_{n=1}^{\infty} M_{n} \exp\left\{\frac{\mu_{n}}{2}\left[-2\sqrt{3}\left(\frac{\mu_{n}t}{a}+z\right)-(\sqrt{3}-i)\eta-(\sqrt{3}+i)\xi\right]\right\}. \tag{12}$$

Легко убедиться, что построенное ядро G(t, z; -, z) удовлетворяет уравнениям (8) и является целой функцией переменной z. Кроме того, справедливы оценки

$$|G(t, z; \eta, \xi)| \leq c_1(t, z)(\eta + \xi + 1)^{-2},$$
 (13)

$$|G(t, z; \eta, \xi)| \le c_2(t)(z + \eta + \xi + 1)^{-2}, z > 0,$$
 (14)
 $-\infty < t < \infty, 0 \le \eta, \xi < \infty,$

где $c_1(t, z)$ и $c_2(t)$ —некоторые положительные функции. При каждом комплексном z определим в пространстве $L^2(0, \infty)$ интегральный оператор G_z по формуле

$$G_{z} f(\xi) = \int_{0}^{\infty} G(t, z; \eta, \xi) f(\eta) d\eta, \quad 0 < \zeta < \infty.$$
 (15)

Покажем, что при всех вещественных z оператор $I+G_z$ обратим, где I—единичный оператор. С этой целью нам понадобятся следующие свойства оператора G_z которые легко следуют из формулы (12) и оценок (13), (14).

- 1° . При каждом z оператор G_z вполне непрерывен.
- 2° . G_z является голоморфной оператор-функцией от z.
- 3°. $||G_z|| \to 0$ при $z \to +\infty$.
- 4°. $(I+G_z) \ge 0$ при Im z = 0.
- 5°. При каждом «>0 имеет место равенство

$$G_z = B_a G_{z-a} B_z, \tag{19}$$

где операторы B_{α} и B_{α}^{+} определяются по формулам

$$B_{\alpha}f(\xi) = \begin{cases} f(\xi-\alpha) & \text{при } \xi > \alpha, \\ 0 & \text{при } 0 < \xi < \alpha, \end{cases}$$

$$B_{\alpha}^{*}f(\xi)=f(\xi+\alpha), \xi>0,$$

и, следовательно, $B_{\alpha}^*B_{\alpha}=I$.

Обратимость оператора $I+G_z$ при Imz=0 докажем исходя из обратного предположения. Пусть при некотором вещественном значении z=x для отличного от нуля элемента $f\in L^2(0,\infty)$ имеет место равенство $f+G_xf=0$. Тогда $(f+G_xf,f)=0$. Отсюда в силу (16) при любом $\alpha>0$ получим

$$(B_{\alpha}^{*}[I+G_{x-\alpha}]B_{\alpha}f, f)=0.$$

Следовательно, $([I+G_{x-\alpha}]B_{\alpha}f, B_{\alpha}f)=0$ и в силу свойства 4°

$$(I + G_{x-\alpha})B_{\alpha}f = 0. \tag{17}$$

Поскольку $B_a f \neq 0$, то согласно (17) при любом a>0 оператор $I+G_{x-a}$ не имеет обратного. Однако в силу свойств 1-3 оператор $I+G_z$ обратим для всех z за исключением, быть может, счетного множества значений, не имеющих конечной точки сгущения. Полученное противоречие доказывает обратимость оператора $I+G_z$ при всех вещественных z.

Таким образом, для определенного по формуле (12) ядра $G(t, x; \eta, \xi)$ интегральное уравнение (9) разрешимо при всех вещественных t и x. При этом можно доказать, что определенные формулами (10) и (11) функции u(t, x) и w(t, x) вещественны и убывают при $x \to +\infty$.

Нетрудно заметить, что приведенные выше утверждения справедливы не только при финитных, но и при достаточно быстро убывающих на бесконечности функциях $S(\lambda)$.

Аналогично могут быть построены убывающие при $x \to -\infty$ решения системы уравнений (1).

Отыскание достаточных условий на функцию $S(\lambda) \not\equiv 0$, при которых определенные формулами (10) и (11) функции u(t,x) и w(t,x) убывают при $x \to \pm \infty$, связано с рядом затруднений. В связи с этим отметим лишь, что если указанные функции u(t,x) и w(t,x) при некотором значении t суммируемы по x на всей оси $(-\infty,\infty)$, то функция $S(\lambda)$ необходимо должна быть мероморфной в каждом из секторов $0 < \arg \lambda < \frac{\pi}{6}$, $\frac{5\pi}{6} < \arg \lambda < \pi$ и непрерывной на полуосях

секторов $0 < \arg \lambda < \frac{\pi}{6}$, $\frac{3\pi}{6} < \arg \lambda < \pi$ и непрерывной на полуосях $(0, \infty)$, $(\infty - 0, 0)$ (3).

Институт математики Академии наук Армянской ССР Ոչ գծային լաբի նավասաբման որոշ լուծումների մասին

Դիտարկվում է դիֆերենցիալ հավասարումների հետևյալ համակարդը.

$$a\frac{\partial u}{\partial t} = 2\frac{\partial w}{\partial x}, \quad a\frac{\partial w}{\partial t} = \frac{1}{6}\frac{\partial^3 u}{\partial x^3} - \frac{1}{3}\frac{\partial u^2}{\partial x}, \\ -\infty < t, \quad x < \infty,$$

րրահղ՝ a-ն զրոյից տարբեր իրական Թիվ էւ Ցրման հակադարձ խնդրի մեթողով կառուցվում են այդ համակարդի որոշ լուծումներ, որոնք նվազում են,

ЛИТЕРАТУРА — ԳРԱԿԱՆՈՒԹՅՈՒՆ

¹ В. Е. Захаров, А. Б. Шабат, Функц. анализ и его прилож., т. 8, № 3 (1974). ² Р. J. Caudrey, Physica 6 D, 51—66 (1982). ³ И. Г. Хачатрян, Изв. АН АрмССР, Математика, т. 18, № 5 (1983).