LXXVI

1983

5

УДК 577.17

ВИОХИМИЯ

М. Ш. Мурадян, А. Н. Едигарян, Р. О. Карапетян, член-корреспондент АН Армянской ССР А. А. Галоян

Влияние нейрогормона «С» на захват [35S] таурина срезами сердца крысы при блокаде рецепторов

(Представлено 27/VII 1982)

Из гипоталамуса разных животных было выделено новое кардиоактивное вещество, названное нейрогормоном "С" (НС) (¹), которое является водорастворимым низкомолекулярным соединением с высокой коронарорасширяющей активностью. НС расширяет артериовенозные анастомозы, открывая закрытые резервные сосуды сердца (²). Оно оказывает свое влияние через циклические нуклеотиды (³) и является ингибитором фосфодиэстеразы (ФДЭ) 3,5 ц-АМФ и ц-ГМФ мозга и сердца (⁴). Механизм действия НС в некоторой степени аналогичен действию тиофилина и др.

К числу соединений, влияющих на деятельность сердечной мышцы путем ингибирования активности ФДЭ, относится сульфаминокислота таурин. В литературе имеются данные о том, что таурин является неспецифическим регулятором чувствительности мнокардиальных клеток к биологически активным веществам (5). Содержание таурина составляет 50% от всего количества свободных аминокислот в сердце (в) и его концентрация повышается при сердечной недостаточности (7). Таурин оказывает терапевтическое действие при ишемической болезни сердца (8), нормализует патологическую ЭКГ (°), обладает положительным инотропным действием (10,11). Предполагается, что в основе физиологического действия таурина на сердце лежит изменение возбудимости сердечной мышцы путем изменения проницаемости клеточной мембраны для K^{\dagger} и $Ca^{2+}(^{12,13})$. Поскольку таурин изменяет реакцию сердечной мышцы на адреналин и ацетилхолин (14), можно предположить, что он оказывает влияние на соответствующие рецепторы клетки.

В свете вышеизложенного представляет большой интерес выяснение взаимодействия таурина и НС при связывании с рецепторами. В настоящем исследовании мы задались целью изучить влияние НС на захват таурина срезами сердца при блокировании адрено- и холи-

норецепторов.

Опыты проводили на самцах белых крыс породы Вистар, массой 180—200 г. Крыс оглушали электрическим током и декапитировали. Срезы сердца преинкубировали в растворе Тироде, содержащем в мМ: NaCl—153,9, KCl—45,5, CaCl₂—2,5, MgCl₂—1,0, NaHCO₃—11,9,

 $NaH_2PO_4-1.0$, глюкоза-5.5, аскорбиновая кислота -2.8. Инкубацию проводили в течение 30 мин в камере объемом 10 мл при 37°, насыщенной кислородом. Затем заменяли этот раствор и проводили инкубацию с исследуемыми веществами: НС, ингибиторами адренорецепторов и холинорецепторов в течение 30 мин, после чего срезы еще 30 мин инкубировали в свежем растворе Тироде в присутствии исследуемого вещества и [35S] таурина в концентрации 0,25 мккюри/мл (2,4-10-12М). По окончании инкубации проводили пятикратную промывку срезов раствором Тироде, затем помещали их в сцинтилляционные кюветы, заливали 1 мл этилового спирта и оставляли на 16-18 ч, после чего добавляли в кюветы 10 мл сцинтилляционной жидкости, содержащей 4 г ППО (2,5-дифенилоксазол) и 100 мг ПОПОП (1,4-ди-5-фенил -2-оксазолил бензол) на 1 л толуола (15). Радиоактивность измеряли на жидкостном сцинтилляционном счетчике (СЛ-30, Intertechnique", Франция) с внешним стандартом, что позволяет выразить захват [35S] таурина в распадах в 1 мин на 1 г ткани. В опытах был использован [35S] таурин фирмы "Amersham" (Англия) с удельной активностью 8,2 кюри/ммоль. Концентрации используемых ингибиторов рецепторов приведены в табл. 1, 2. Результаты обрабатывали статистически с использованием критерия Стьюдента.

Таблица 1-Влияние НС на захват [35S] таурина срезами желудочков сердца крысы при блокаде рецепторов (счет/мин/г)

		Желудочек сердца				
	Концентра-	Правый	% наме-	Левый	% изме-	
Контроль НС Програнолол ПП+НС Фентоламин ФА+НС Кокаин Кокаин Кокаин НС Атропин Атропин НС Амизил	2.4.10-12 0.28ФДЭ 5.10-7 5.10-7 5.10-5 0.29.10-8	1534943 ± 219786 1662250 ± 146048 $1061650 \pm 85597^{+}$ $1415577 \pm 180372^{+}$ 1145200 ± 244967 $466538 \pm 22878^{++}$ $572882 \pm 49534^{++++}$ 831333 ± 129516 $1005462 \pm 116870^{+}$ $1359769 \pm 111886^{+}$ $864458 \pm 122391^{++}$	8 -31 -33 -25 -59 -63 -45 -34 -35 -44	1326000+186498 2019667+15483*+ 724656+85668*+++ 686815+48584 532667+91749*+* 388059+55047* £95167+35594*+++ 772857+101475 603893+41441*++ 882889+57312*++ 1397500+154261	52 -45 -50 -27 -55 30 -54 46	

Примечания. Вероятность ингибиторов и НС приведена в сравнении с контролем, а сочетание ингибиторов + НС—с результатами соответствующих ингибиторов. Разница с контролем статистически достоверна: $^+$ P<0.05; $^+$ P<0.02; $^+$ ++P<0.01; $^+$ +++P<0.001.

Средние данные по 6—12 опытам.

Опыты показали, что НС в разных участках сердца оказывает неоднотипное влияние на захват таурина по сравнению с контролем. Установлено усиление на 52% в левом желудочке и на 56% в левом предсердии сердца под влиянием НС, в то время как связывание 226

таурина другими участками сердца (правое предсердие, правый желудочек) достоверно не изменяется (табл. 1, 2, рис. 1—4).

Под влиянием β-адреноблокатора пропранолола в концентрации 5.10^{-7} М наступает угнетение захвата таурина правым желудочком на 31, левым желудочком —45%. На захват таурина левым и пра-

Таблица 2 Влияние НС на захват [35S] таурина срезами предсердия крысы при блокаде рецепторов

	Концентра-	Предсердие				
		Правое	% изме-	Левое	% изме-	
Контроль НС Пропранолол ПП—НС Фентоламин ФА—НС Кокаин Кокаин Кокаин НС Агропин Атропин Атропин НС Амизил Амизил—НС	2.4.10-12 0.28 ФДЭ 5.10-7 5.10-7 5.10-7 0.29.10-8	1484641±266435 952833±154354+ 1235319±160246+ 959565±397489 654846±79585 351294±63529++ 550556±38261+++ 843727±62639+++ 567607±30186+++ 772733±60516++ 815190±266981 774200±83419		866439+86876 1351167+550484+++ 922472+168532+ 705172+97074 740655+65271 398944+27258+++ 432 04+27312+ 869889+74086-+-+ 650549+46956+ 1477789+198081++++ 862080+66208+ 471286+53857+++	56 -24 -15 46 50 101 25 127 1	

Примечания те же, что и к табл. 1. За единицу нейрогормона «С» (НС) принимают 2,85 ФДЭ—количество препарата, ингибирующее 1 МЕ активности.

вым предсердиями он не оказывает влияния. Сочетание НС с пропранололом снимает блокирующее действие пропранолола на захват таурина только правым желудочком сердца (табл. 1, 2, рис. 1—4).

L-адреноблокатор фентоламин в концентрации $5\cdot 10^{-7}$ М вызывает сравнительно незначительное угнетение захвата таурина правым предсердием и левым желудочком сердца. При сочетании НС с фентоламином наблюдается угнетение захвата таурина правым и левым предсердиями (на 46%) и правым желудочком сердца (на 59%) (табл. 1, 2, рис. 1—3).

Для определения степени нейронального связывания [35 S] таурина в сердце был исследован захват [35 S] таурина при действии ингибитора нейронального захвата катехоламинов кокаина в концентрации $5 \cdot 10^{-5}$ М (табл. 1, 2, рис. 1 - 4).

Выяснилось, что кокаин приводит к выраженному угнетению захвата таурина на всех участках сердца (в левом предсердии — на 50, правом предсердии — на 63, левом желудочке — на 63, правом желудочке — на 55%). В присутствии НС кокаин не проявляет своего характерного блокирующего воздействия на захват таурина во всех исследуемых участках сердца. В этом случае происходит активация захвата, которая составляет 53% в правом и 101% в левом предсердиях, 30% в правом и 45% в левом желудочках.

Представляют значительный интерес данные, полученные с ингибитором М-холинорецепторов — атропином в концентрации

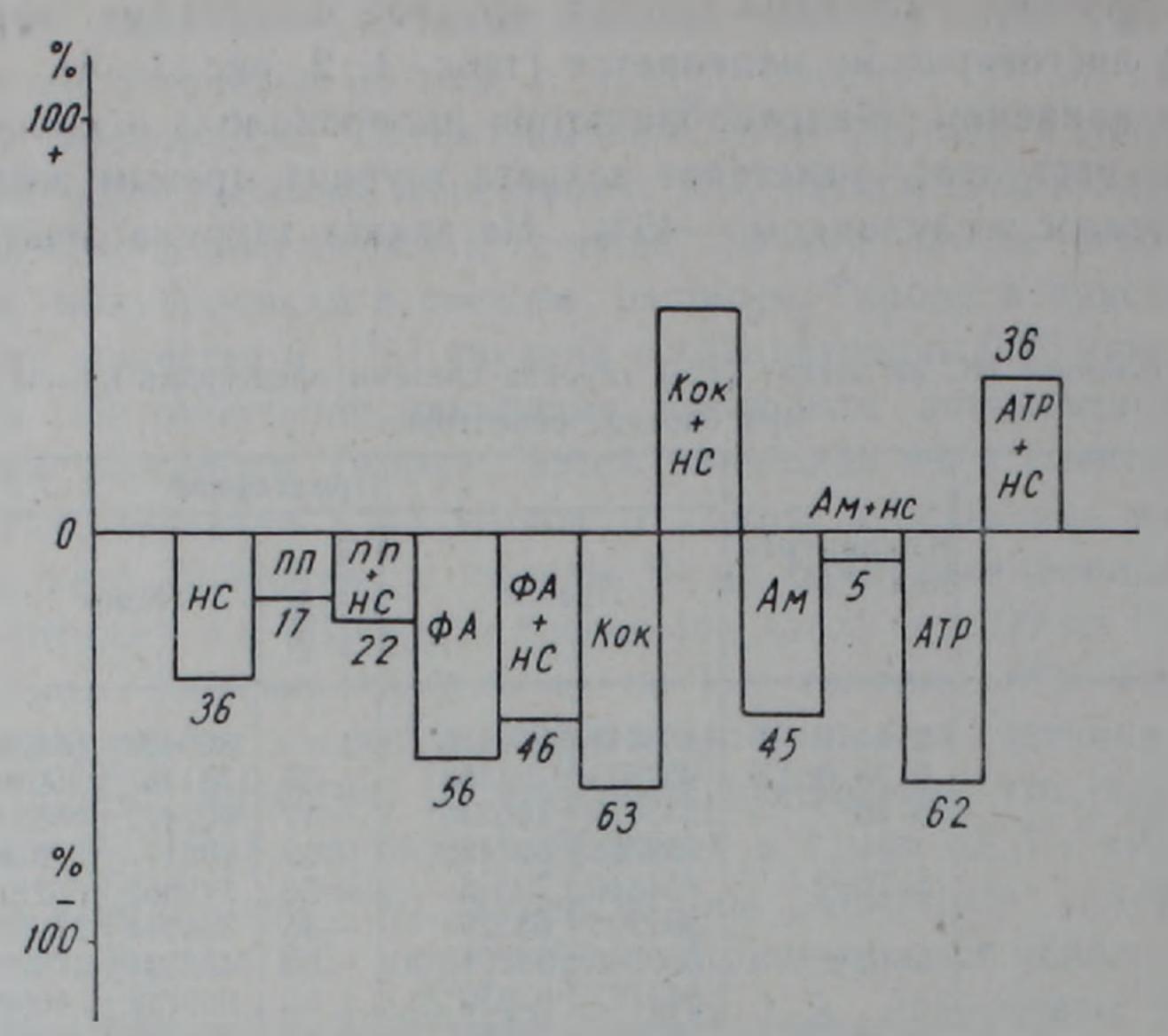


Рис. 1. Захват [35S] таурина срезами правого предсердия под влиянием НС и его сочетаний с ингибиторами адрено- и холинорецепторов. НС—нейрогормон "С", ПП—пропранолол, ФА—фентоламин, Кок—кокаин, АМ—амизил, Атр.—атропин.

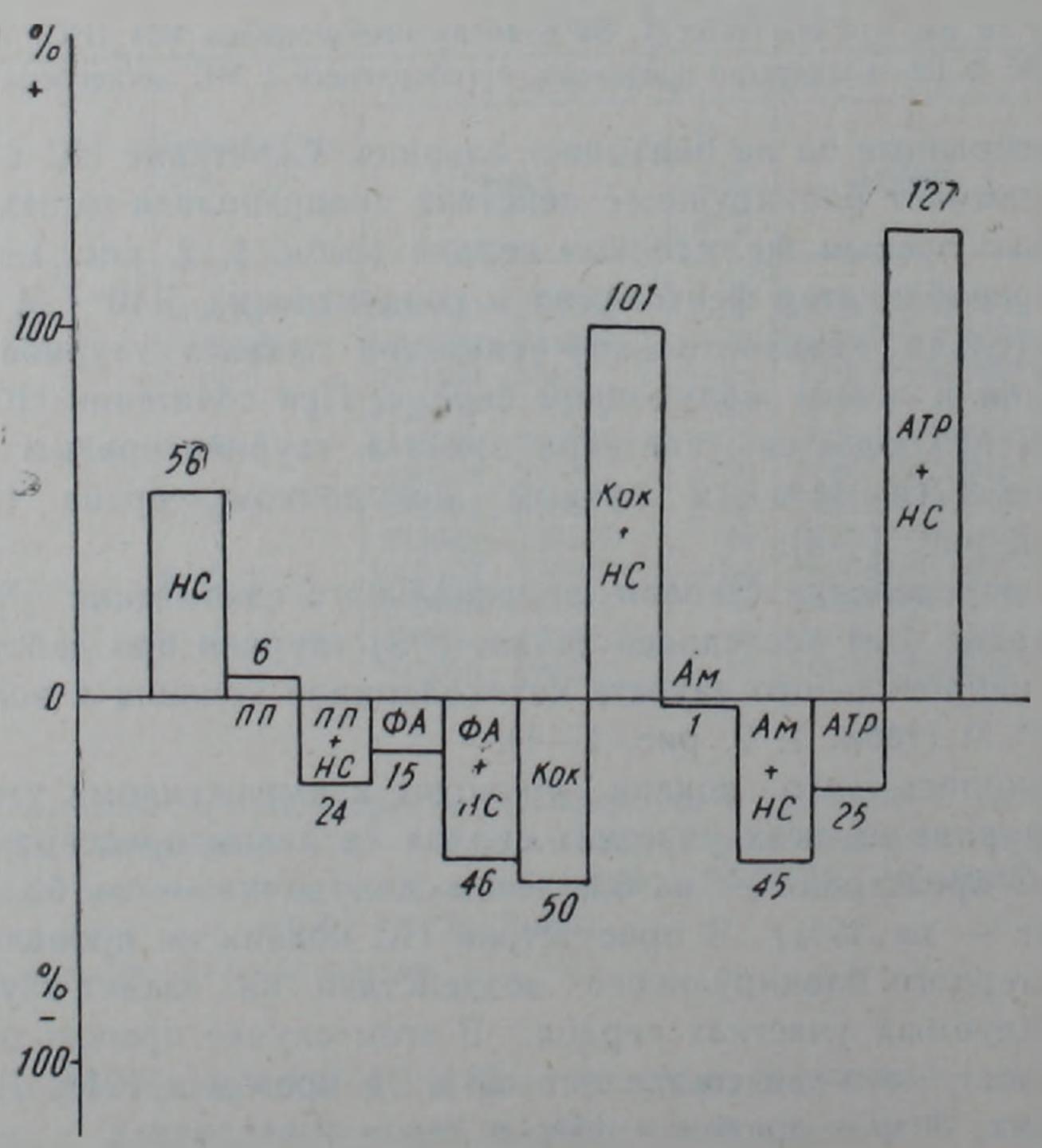


Рис. 2. Захват [35S] таурина срезами левого предсердия под влиянием НС. Обозначения на рис. 2—4 те же, что на рис. 1

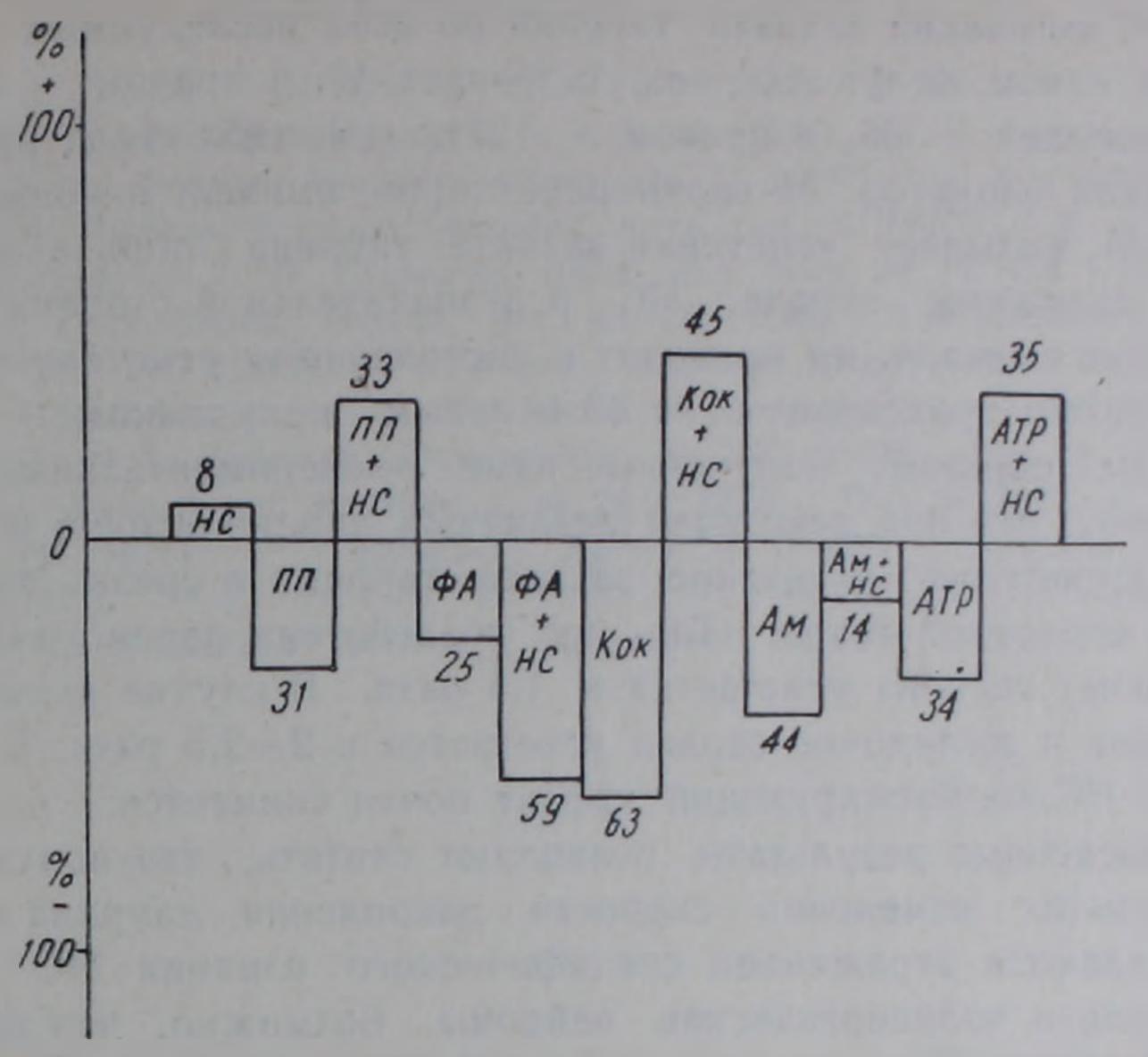


Рис. 3. Захват [35S] таурина срезами правого желудочка сердца под влиянием НС

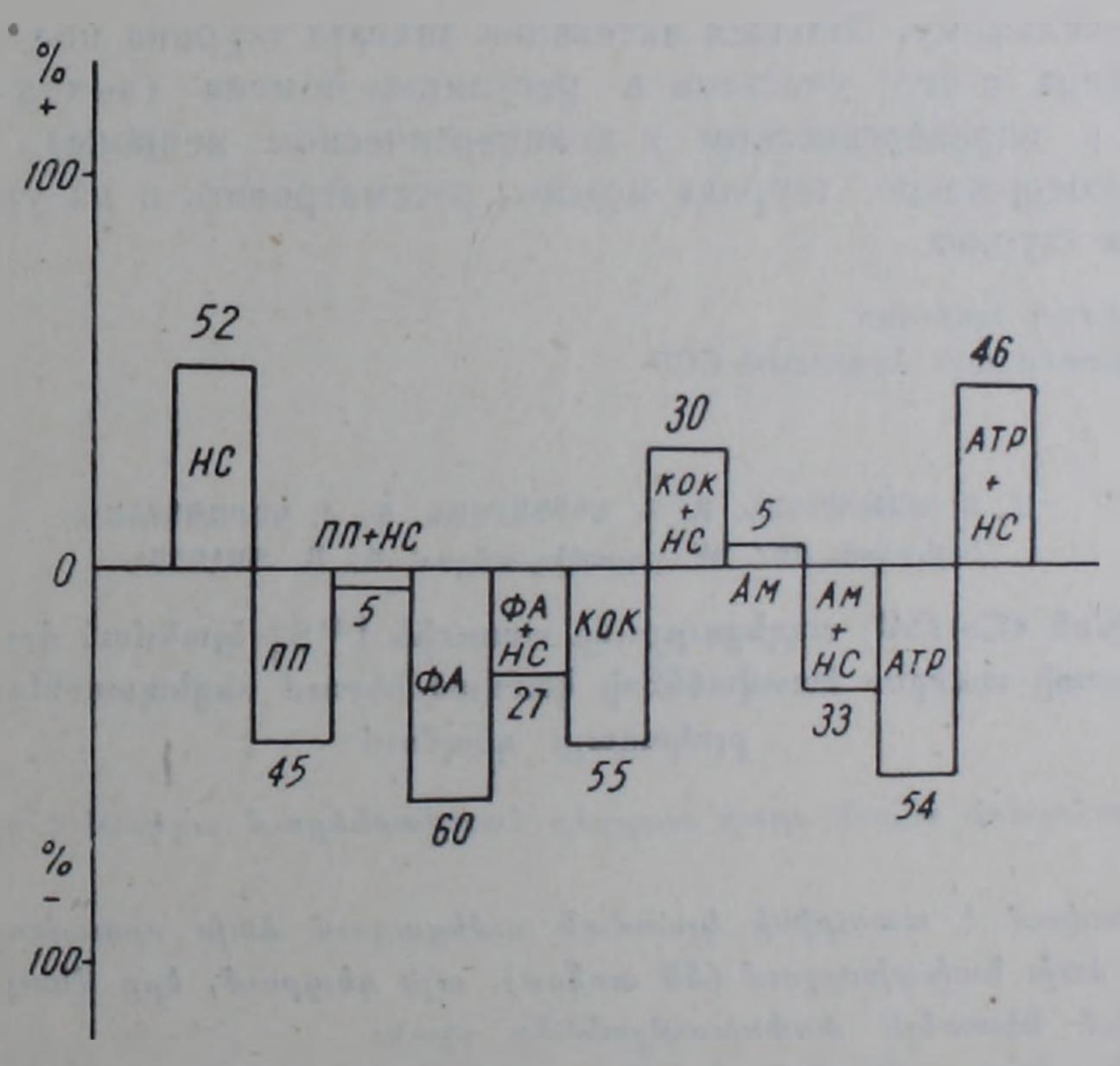


Рис. 4. Захват [35S] таурина срезами левого желудочка сердца под влиянием НС

0,29·10-8 М. Атропин вызывает угнетение захвата таурина в левом предсердии — на 25, правом — на 62, в левом желудочке — на 54, в правом — на 34%. Сочетание же атропина с НС приводит к зна-

чительной активации захвата таурина во всех исследуемых участках сердца: в левом желудочке она составляет 46, в правом — 35, в левом предсердии — 36, в правом — 127% (см. табл. 1, 2, рис. 1-4).

Другой блокатор М-холинорецепторов, амизил, в концентрации $0.5 \cdot 10^{-8}$ М вызывает угнетение захвата таурина лишь в опытах на правом желудочке сердца. НС в незначительной степени снимает этот эффект амизила, но приводит к достоверному угнетению захвата таурина левым предсердием на 45 и левым желудочком — на 33%.

Таким образом, полученные нами экспериментальные данные показывают, что под действием различных адренолитиков и холинолитиков происходит угнетение захвата таурина в срезах различных участков сердечной ткани. Так, при воздействии адренотропных веществ захват таурина угнетается в 1,5 раза. В случае кокаина захват таурина в желудочке сердца угнетается в 2—2,5 раза. В присутствии же НС их блокирующий эффект почти снимается.

Приведенные результаты позволяют считать, что полученные в наших опытах изменения скорости накопления таурина в тканях сердца являются отражением специфического влияния НС на адренергические и холинергические нейроны. Возможно, что активация захвата таурина в сердце связана с действием НС одновременно на функциональные и метаболические процессы, протекающие в адрено- и холинорецепторах.

По-видимому, большая активация захвата таурина под влиянием НС связана с его участием в регуляции обмена (выход и синтез таурина в адренергическом и холинергическом нейроне). Влияние НС на содержание таурина можно рассматривать и на уровне рецепторов таурина.

Институт биохимии Академии наук Армянской ССР

> Մ. Շ. ՄՈՒՐԱԴՅԱՆ, Ա. Ն. ԵԳԻԳԱՐՅԱՆ, Ռ. Հ. ԿԱՐԱՊԵՏՅԱՆ, Հայկական ՍՍՀ ԳԱ թղթակից–անղամ Ա. Ա. ԳԱԼՈՅԱՆ

Նեյբոնումոն «C» (ՆՍ) ազդեցությունը տաուբին [35S] կլանման վբա առնետի սբտի տաբբեր հատվածների կտրվածքներում ռեցեպտուների բլոկադայի դեպքում

Նեյրոհորմոն «C»-ն սրտի տարբեր հատվածներում ազդում է ոչ միատեսակ։

Նկատվում է տաուրինի կլանման ուժեղացում ձախ սրտախորշում (52 տոկոս), ձախ նախախորշում (56 տոկոս), այն դեպքում, երբ մնացած հատվածներում նկատելի փոփոխություններ չկան։

Խոլինո և ադրենոռեցեպտորների բլոկադման ժամանակ սրտի տարբեր Հատվածներում նկատվում է տաուրինի կլանման ճնշում 1,5—2 անգամ, իսկ ՆՍ-ի Համակցության դեպքում նկատվում է կլանման ինտենսիվացում։

Ըստ երևույթին տաուրինի կլանման ուժեղացումը նեյրոհորմոնի ինչպես նաև վերջինիս բլոկատորների հետ ազդեցության ներքո կարելի է դիտել նեյրոններում տաուրինի ֆունկցիոնալ և մետաբոլիկ փոխանակության կարգավորումով։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

¹ А. А. Галоян, ДАН АрмССР, т. 34, № 3 (1962). ² С. С. Абрамян, М. А. Ростомян, А. А. Галоян, Кровообращение, т. 8, № 12 (1975). ³ А. А. Галоян, Б. Я. Гурвиц, Р. Г. Галстян, Вопросы биохимии мозга, вып. 11 (1977). ⁴ А. А. Галоян, Б. Я. Гурвиц, М. А. Погосян, Вопросы биохимии мозга, вып. 11 (1977). ⁵ Л. С. Мальчикова, Н. В. Сперанская, Е. П. Елизарова, Бюлл. эксп. биол., № 12, 135 (1979). ⁶ J. G. Jacobsen, L. H. Smith, Physiol. Rev., 48, 424 (1968). ⁷ R. Huxtable, R. Bresslef. Science, 184, 1187 (1974). ⁸ G. Nigro, J. Comia, A. Loindies, Clin. Ther., 56, 347 (1971). ⁹ E. I. Chasov, L. S. Malchicova, G. B. Asafov e. a., Circulat. Res., 35, 3, 111 (1974). ¹⁰ S. Fujimoto, Experimentia, 10, 1350 (1977). ¹¹ A. A. Галоян, М. Ш. Мурадян, Биол. журн. Армении, т. 32, № 2 (1979). ¹² J. Dietrich, J. Diacono, Life Sci, 10, 499 (1971). ¹³ P. Dolara, A. Agristi, A. Giotti, e. a., Europ. J. Pharmacol., 24, 352 (1974). ¹⁴ S. Fujimoto, H. Iwata, Y. Yonada, Jap. J. Pharmacol., 26, 105 (1976). ¹⁵ J. J. Coule, J. Axelrod, J. Neurochem., 18, 2061 (1971).