20540400 UU2 ԳԻՏՈՒРЗՈՒՆՆԵՐԻ ԱԿԱԴԵՄԻԱՑԻ ՉԵԿՈՒ58ՆԵՐ ДОКЛАДЫ АКАДЕМИИ НАУК АРМЯНСКОЯ ССР

1982

LXXV

214

УДК 538.3

ЭЛЕКТРОДИНАМИКА

5

Р. Г. Тарханян

К теории распространения электромагнитных воли в гиротропных кристаллах

(Представлено академиком АН Армянской ССР А. Г. Иосифьяном 26/IV 1982)

Большинство гиротропных кристаллов, обладающих свойством естественной оптической активности, существует в двух различных энантиоморфных модификациях — "правой" и "левой", вращающих плоскость поляризачии электромагнитного излучения в противоположных направлениях (например, кварц SiO₂, киноварь HgS и т. д. (¹)). Тензоры диэлектрической проницаемости этих различных мо-

дификаций одного и того же вещества отличаются друг от друга лишь при учете пространственной дискерсии первого порядка по малому параметру a/λ (a—постоянная кристаллической решетки, λ —длина волны; в оптической области спектра $a/\lambda \sim 10^{-2} - 10^{-3}$). Распространение элек громагнитных волн в таких средах и, в частности, особенности отражения и преломления света на границе раздела "правой" и "левой" модификаций представляют несомненный интерес, однако для выяснения этих особенностей использование классической феноменологической теории гиротропии в электродинамике сплошных сред (⁴) обосновано недостаточно, и, как указано в (^{4,5}), теория нуждается в существенном обобщении и модификации.

В настоящем сообщении предлагается решение задачи об отражении и прохождении света через структуру, состоящую из двух диэлектрических пластин различной толщины, вырезанных из оптически активных анизотропных кристаллов, энантиоморфных друг другу. По обе стороны от границ системы — одинаковая изотропная среда, например, воздух. Будем считать, что граница раздела двух кристаллических пластин совпадает с плоскостью z=0, а оптические оси кристаллов ориентированы произвольным образом в плоскости *xz*. Данная задача в таком виде ранее не решалась. Пусть область пространства

транства 0 <2 <d, занимает "левое" вещество, а область 0 >2 >-d₂-"правое". На внешнюю поверхность "правого" кристалла $z = -d_{g}$ падает нормально из вакуума электромагнитная волна \vec{E}_{0} , $\vec{H}_{0} \sim e^{d(k_{w}z - wt)}$ с произвольной поляризацией. Уравнения поля по Максвеллу и материальные соотношения в области "правого" кристалла напишем в виде $rot \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$, $div \vec{B} = 0$; (1a)

$$\operatorname{rot}\vec{H} = \frac{1}{c} \frac{\partial D}{\partial t}, \quad \operatorname{div}\vec{D} = 0;$$
 (16)

$$D = e(E + a \operatorname{rot} E), \quad B = \mu(H + a \operatorname{rot} H).$$
 (2)

Здесь в и и – вещественные и симметричные тензоры диэлектрической и магнитной проницаемостей, зависящие только от частоты вол-

A A

ны w; a-псевдотензор второго ранга, описывающий пространственную дисперсию порядка a/l; знак тильда означает транспонирование. В случае немагнитных кристаллов, рассмотрением которых мы ограничимся. (символ Кронекера). Материальные соотношения типа (2) в рамках микротеории были получены в (°), а в феноменологической теории — в (^{1,8}).

Уравнения поля по Максвеллу – Иосифьяну и материальные соотношения для "левого" кристалла напишем в виде

$$\operatorname{rot} \vec{H}_{g} = -\frac{1}{c} \frac{\partial \vec{D}_{g}}{\partial t}, \quad \operatorname{div} \vec{D}_{g} = 0; \quad (31)$$

$$\operatorname{rot} E_g = \frac{1}{c} \frac{\partial B}{\partial t} \quad \operatorname{div} B_g = 0; \quad (36)$$

$$\vec{D}_g = \epsilon(\vec{E}_g - \alpha \operatorname{rot} \vec{E}_g), \quad \vec{B}_g = \mu(\vec{H}_g - \alpha \operatorname{rot} \vec{H}_g).$$
 (4)

Система уравнений (За, б) представляет собой инверсно-сопряженную систему уравнений электродинамики, предложенную в работах (^{в 10}). Обоснование применимости этих уравнений и доказательство их эквивалентности с уравнениями макроскопической электродинамики в рассматриваемом случае непроводящих сред дано в (¹¹). В работе (¹²) указанная система рассматривается с точки зрения бинарного представления уравнений электродинамики для прямого и инверсного просгранств. В нашем случае прямая и инверсная системы уравнений применяются в различных геометрических пространствах, заполненных различными кристаллами.

В областях пространства и z < -4 вне рассматриваемой структуры уравнения поля совпадают соответственно с (1) и (3), следует лишь в материальных соотношениях (2) и (4) положить $z_{ij} = 0$, $c_{ij} = c_{ij}$. На границе раздела "левого" и правого" кристаллов z = 0 граничные условия имеют вид

$$[\vec{E} + \vec{E}_g, \vec{Z}] = 0, \ [\vec{H} - \vec{H}_g, \vec{Z}] = 0, \ (\vec{D} + \vec{D}_g) \cdot \vec{Z} = 0, \ (\vec{B} - \vec{B}_g) \cdot \vec{Z} = 0, \ (5)$$

где Z—единичный вектор нормали к граннце раздела. Обозначим поля в области z < -d, верхним индексом d, а в области $z > d_1$ —индексом t. Тогда условия непрерывности полей на границах раздела $z = -d_2$ и $z = d_1$ принимают вид соответственно

$$[\vec{E}-\vec{E}^{0},\vec{Z}]=0, \ [\vec{H}-\vec{H}^{0},\vec{Z}]=0, \ (\vec{D}-\vec{D}^{0})\cdot\vec{Z}=0, \ (\vec{B}-\vec{B}^{0})\cdot\vec{Z}=0; \ (6a)$$
$$[\vec{E}_{g}-\vec{E}_{l},\vec{Z}]=0, \ [\vec{H}_{g}-\vec{H}_{l},\vec{Z}]=0, \ (\vec{D}_{g}-\vec{D}_{l})\cdot\vec{Z}=0, \ (\vec{B}_{g}-\vec{B}_{l})\cdot\vec{Z}=0. \ (6b)$$

215

В связи с видом материальных уравнений (2) и (4) следует отметить, что возможен еще и такой вариант феноменологического описания, когда члены, ответственные за оптическую активность, можно включить лишь в определение вектора электрической индукции. Однако в этом случае аналогично (^{4,5}) можно показать, что условие выполнения баланса потоков энергии на границе раздела двух сред приводит к довольно громоздким граничным условиям, значительно отличающимся от условий (5) и (6*a*, *б*). Именно ввиду простоты последних при описании гиротропии мы отдаем предпочтение изложенному выше подходу, который отличается от общепринятого классического подхода (³).

Система уравнений (1), (3) с материальными соотношениями (2), (4) и граничными условиями (5), (6) позволяет решить любую задачу о распространении, отражении и преломлении электромагнитных воли в сложной системе из гиротропных кристаллов. В дальнейшем рассмотрим случай нормального падения плоской монохроматической волны из изотропной среды с показателем преломления $n_0 = \frac{ck_0}{m}$ на верхнюю границу "правого" кристалла $z = -d_2$. Обозна-

чим $E_r e^{-ik_s z}$ вектор электрического поля в отраженной волне (множитель $e^{-i\omega t}$ опускаем); $E_1 e^{ik_1 z}$ и $E_2 e^{ik_s z}$ – векторы преломленных волн в области $0 > z > -d_s$, идущих от верхней границы; $E_3 e^{-ik_1 z}$ и $E_4 e^{-ik_s z}$ – волны в той же области, отраженные ог нижней грани z = 0; $E_{s1} e^{ih_1 s}$, $E_{g2} e^{ik_2 g^2}$, $E_{g3} e^{-ik_1 g^2}$, $E_{g4} e^{-ik_2 g^2}$ —соответствующие векторы в области "левого" кристалла ($0 < z < d_1$) и наконец $E_t e^{ik_s z}$ —вектор электрического поля прошедшей волны в области $z > d_1$. Волновые числа k_1, k_2 и k_1, k_2 определяются решением дисперсионных уравнений, характеризующих "правый" и "левый" кристаллы соответственно. Используя уравнения (1*a*, *б*) и материальные отношения (2), нетрудно получить дисперсионное уравнение для "правого" кристалла в виде

 $n^{4}\left(\frac{\varepsilon_{zz}}{\varepsilon_{\perp}\varepsilon_{\parallel}}-x^{2}\alpha_{xx}^{2}\right)\left(1-\varepsilon_{\perp}x^{2}\alpha_{\perp}^{2}\right)-n^{2}\left(1+\frac{\varepsilon_{zz}}{\varepsilon_{\parallel}}+2\varepsilon_{\perp}x^{2}\alpha_{\perp}\alpha_{xx}\right)+\varepsilon_{\perp}=0,$ (7) где $x=\frac{\omega}{c}$; $n=\frac{k}{x}$ - показатель преломления; ε_{\parallel} и ε_{\perp} -главные значения тензора диэлектрической проницаемости кристалла вдоль и поперек оптической оси; α_{\parallel} и α_{\perp} -соответствующие величины для

тензора а;

 $\varepsilon_{xx} = \varepsilon_{||} \cos^2 \varphi_2 + \varepsilon_{\perp} \sin^2 \varphi_2; \qquad (8)$ $\alpha_{xx} = \alpha_{\perp} \cos^2 \varphi_2 + \alpha_{||} \sin^2 \varphi_2; \qquad (9)$

⁴²—угол между оптической осью "правого" кристалла и волновой нормалью. Решения уравнения (7) определяют волновые числа k₁ и k₂, которые с точностью до членов первого порядка по α имеют вид

216

 $k_{1,2} = \frac{\varepsilon_{\perp} \varepsilon_{\parallel} x^2}{2\varepsilon_{\perp}} - \left\{ 1 + \frac{\varepsilon_{zz}}{\varepsilon_{\parallel}} \pm \left[\left(1 - \frac{\varepsilon_{zz}}{\varepsilon_{\parallel}} \right)^2 + 4\varepsilon_{\perp} x^2 (\alpha_{\perp} + \alpha_{xx}) \left(\alpha_{xx} + \alpha_{\parallel} \frac{\varepsilon_{zz}}{\varepsilon_{\parallel}} \right) \right]^3 \right\}.$ (10) Используя систему уравнений (3*a*, *б*) для "левого" кристалла и материальные соотношения (4), для волновых чисел k_{1g} и k_{2g} аналогичным образом получим выражения, которые отличаются от (10) лишь тем, что в формулах (8) и (9) для ε_{zz} и α_{xx} угол φ заменяется на угол φ , определяющий ориентацию оптической оси "левого" кристалла. Заметим, что в отсутствие гиротропии ($\alpha_{\perp,\parallel} = 0$) из (10) полу-

чим известные решения (13)

$$\frac{k_{1}^{2}}{x^{2}} = \varepsilon_{\perp}; \qquad (11)$$

$$\frac{k_{2}^{2}}{x^{2}} = \frac{\varepsilon_{\perp}\varepsilon_{\parallel}}{\varepsilon_{zz}}, \qquad (12)$$

первое из которых соответствует поперечной волне $E = (0, E_y, 0)$, а второе — необыкновенной волне $\vec{E}(E_x, 0, E_z)$ с зависящим от угла у показателем преломления.

Перейдем теперь к определению амплитуд отраженной и про-

шедшей волн. Используя граничные условия (5), (6*a*) и (6*б*), получим систему 20 линейных уравнений с 20 неизвестными. Исключая из этих уравнений составляющие векторов, характеризующих электромагнитное поле в области $-d < < d_1$, после несложных, но громоздких вычислений получим систему 4-х неоднородных уравнений для составляющих амплитуд отраженной (E_{rx} , E_{ry}) и прошедшей (E_{tx} , E_{ty}) волн:

$$(a_{xl}E_{rx}+a_{yl}E_{ry})e^{ih_{0}d_{2}}+\delta_{l}(b_{xl}E_{lx}-b_{yl}E_{ly})e^{ih_{0}d_{1}}=(-1)^{l}(a_{xl}^{*}E_{ox}-a_{yl}^{*}E_{oy})e^{-ih_{0}d_{3}},$$

(13)
 $l=1-4$. Здесь $\delta_{l}=1$ для $l=1,4$ и $\delta_{l}=-1$ для $l=2,3$, а коэффициенты

алі наулимеют вид

$$a_{x1} = c_1 + c_2 + in_0 \theta \left(\frac{p_1 s_2}{n_2} - \frac{p_2 s_1}{n_1}\right), \quad a_{y1} = \frac{in_0 \eta}{xq_1 q_2} (c_2 - c_1) + \frac{\theta}{x} \left(\frac{s_1}{n_1} - \frac{s_2}{n_2}\right); \quad (14a)$$

 $a_{x2} = i \times n_0 \theta p_1 p_2 (c_1 - c_2) + \chi (n_1 s_2 s_2 - n_2 s_1 s_1), \ a_{y2} = \theta (p_2 c_2 - p_1 c_1) +$

$$+i\eta \frac{n_0}{q_1} \varepsilon_2(n_2 s_3 - n_1 s_1); \qquad (146)$$

 $a_{x3} = q_1 c_1 n_1^2 + q_2 c_2 n_2^2 + i n_0 \theta (p_1 n_2 q_2 s_2 - p_2 n_1 q_1 s_1); \quad a_{y3} =$

 $a_{x3} = q_1c_1n_1 + q_2c_2n_2 + in_00(p_1n_2q_2s_2 - p_2n_1q_1s_1) + isys$ $= \frac{in_0\eta}{\chi} \left(\frac{c_2n_2^2}{q_1} - \frac{c_1n_1^2}{q_2} \right) + \frac{\theta}{\chi} (n_1q_1s_1 - n_2q_2s_2); \quad (146)$ $a_{x4} = n_0\theta (p_1c_2 - p_2c_1) + is \left(\frac{n_1s_2}{q_2} - \frac{n_2s_1}{q_1} \right); \quad a_{y4} = \frac{i\theta}{\chi} (c_2 - c_1) + \eta \frac{n_0}{\chi q_1q_2} (n_1s_1 - -n_2s_2); \quad (142)$ rge 217

$$c_{1} = \cos(k_{1}d_{2}), \quad c_{2} = \cos(k_{2}d_{2}), \quad s_{1} = \sin(k_{1}d_{2}), \quad s_{2} = \sin(k_{2}d_{2}), \\q_{1}^{-1} = \varepsilon_{\perp} - n_{1}^{2}, \quad j = 1, 2; \quad \xi_{j} = \alpha_{\perp}\varepsilon_{\perp} + \alpha_{xx}n_{j}^{2}, \quad p_{j} = q_{j}\xi_{j}, \quad \theta^{-1} = p_{2} - p_{1}, \\\eta^{-1} = \varepsilon_{\perp}^{2}(\alpha_{\perp} + \alpha_{xx})(n_{1}^{2} - n_{2}^{2}), \quad \zeta_{j} = \frac{n_{1}n_{2}}{\varepsilon_{1}(n_{1}^{2} - n_{2}^{2})}. \quad (15)$$

Выражения для коэффициентов b_{xl} и b_{yl} в (13) отличаются от a_{xl} и a_{yl} лишь заменой в (15) величин k_1 , k_2 и d_2 на k_{1s} , k_{2g} и d_1 соответственно. Решение системы уравнений (13) удобно представить в матричном виде

$$\vec{E}_r = \hat{R}\vec{E}_0, \qquad \vec{E}_t = \hat{T}\vec{E}_0,$$
 (16)
менты матриц $\hat{R} = \begin{pmatrix} R_1 & R_2 \\ R_3 & R_4 \end{pmatrix}$ и $\hat{T} = \begin{pmatrix} T_1 & T_2 \\ T_3 & T_4 \end{pmatrix}$ даются выражения-

МИ

где эле

$$R_{i} = \frac{D_{i}^{(1)}}{D} e^{-2ik_{0}d_{2}}, \qquad i = 1 - 4; \qquad (17)$$

$$T_{i} = \frac{D_{i}}{D} e^{-ik_{0}(d_{1} + d_{2})}, \qquad i = 1 - 4; \qquad (18)$$

$$D = \begin{vmatrix} a_{x1} & a_{y1} & b_{x1} - b_{y1} \\ a_{x2} & a_{y1} & -b_{x2} & b_{y2} \\ a_{x3} & a_{y3} & -b_{x3} & b_{y3} \\ a_{x4} & a_{y1} & b_{x4} - b_{y4} \end{vmatrix}$$
(19)

 $D_{1}^{(r)}$, D_{1} и D_{3} —определители, которые получаются из (19) заменой соответственно первого, второго, третьего и четвертого столбцов на столбец с элементами ($-a_{11}^{*}$, a_{23}^{*} , a_{x3}^{*}), а $D_{2}^{(r)}$, $D_{4}^{(r)}$, D_{2} и D_{4} аналогичной заменой на столбец с элементами (a_{11}^{*} , $-a_{y2}^{*}$, a_{33}^{*} , $-a_{y4}^{*}$). Используя (16), для коэффициентов отражения и прохождения получим соответственно

$$R = \frac{|R_1 + v_0 R_2|^2 + |R_3 + v_0 R_4|^2}{1 + |v_0|^2}; \qquad (20)$$

$$T = \frac{|T_1 + v_0 T_2|^2 + |T_3 + v_0 T_4|^2}{1 + |v_0|^2}, \qquad (21)$$

(23)

где $v_0 = \frac{E_{oy}}{E_{ox}}$ определяет поляризацию падающей волны. Поляризация отраженной и прошедшей воли определяются соотношениями

$$\nu_{t} = \frac{L_{ry}}{E_{rx}} = \frac{R_{3} + \nu_{0}R_{4}}{R_{1} + \nu_{0}R_{2}}, \quad \nu_{t} = \frac{L_{ty}}{E_{tx}} = \frac{T_{3} + \nu_{0}T_{4}}{T_{1} + \nu_{0}T_{2}}.$$
(22)

Обе эти волны обладают, вообще говоря, эллиптической поляризацией, причем степень эллиптичности (отношение длин осей эллипса) равна

$$e = \frac{2 \text{Imv}}{1 + |v|^2 + \sqrt{(1 + |v|^2)^2 - 4(1 \text{Imv})^2}}$$

При — ±/ величина |e| = 1, при этом эллипс превращается в окруж-218 ность. Если же lmv=0, то эллипс превращается в прямую линию, т. е волна обладает линейной поляризацией.

Формулы (14)—(23) полностью решают поставленную задачу и позволяют ответить на любой вопрос о поведении как отраженной так и прошедшей через рассматриваемую систему электромагнитной волны. Определим, например, величину угла вращения плоскости поляризации прошедшей волны относительно плоскости поляризации линейно-поляризованной падающей волны. Используя (22), для отношения составляющих вектора E_i в системе координат x', y', z, в которой ось x' направлена вдоль плоскости поляризации падающей волны (E_0 ox'), получим

$$\mathbf{v}' = \frac{E_{ty'}}{E_{tx'}} = \frac{T_3 + v_0 (T_4 - T_1) - v_0 T_2}{T_1 + v_0 (T_2 + T_3) + v_0 T_4}.$$
(24)

 $tg2\psi = \frac{2Rev}{1-|v'|^2}$

Записывая правую часть этого равенства в виде v'=Rev'+ilmv нетрудно показать, что угол поворота v большой оси эллипса поляризации прошедшей волны относительно плоскости поляризации падающей волны определяется формулой

$$tg2_{||}^{2} = \frac{2Re(D_{1}D_{1})}{|D_{1}|^{2} - |D_{3}|^{2}}.$$
(26)

Если же падающая волна поляризована в направлении, перпендикулярном плоскости xz, то аналогичным образом получим

$$tg2\psi_{\perp} = \frac{2Re(D_{4}D_{4}^{*})}{|D_{2}|^{2} - |D_{4}|^{2}}$$
(27)

Поскольку правые части (26) и (27) являются функциями параметров то очевидно, что измеряя опытным путем углы и используя эти формулы, можно с высокой точностью определить толщину обеих пластин, образующих рассматриваемую систему. Кроме того, при известных значениях d, и d₂ эти формулы могут быть использованы для определения углов φ_1 и φ_2 , характеризующих

ориентацию оптических осей кристаллов. Указанный бесконтактный способ определения параметров имеет особо важное значение в случаях тонких пленок, широко используемых в современном приборостроении с целью создания миниатюрных твердотельных оптических приборов.

Автор признателен академику АП Армянской ССР А. Г. Иосифьяну за ценное обсуждение.

Институт раднофизики и электроники Академии наук Армянской ССР (25)

A. 2. PURBULSUL

Գիբուտուպ բյուրեղներում էլեկտրամագնիսական ալիքների տարածման տեսության վերաբերյալ

Աշխատանքում հետազոտված հն էլեկտրամագնիսական ալիջների տա. րածման առանձնահատկությունները երկու Լնանտիոմորֆ օպտիկապես ակ. տիվ անիզոտրոպ բյուրեղներից կազմված սիստեմում։ Դիտարկված են կա. մայական հաստության և օպտիկական առանցջների կամայական կողմնորո. շում ունեցող բյուրեղներ։ Ստացված են ընդհանուր բանաձևեր լույսի անդրա. դարձման և անցման գործակիցների, ինչպես նաև բևեռացման հարթության պտտման անկյան համար։

Առաջարկված է ոչ կոնտակտային մեթոդ գիրոտրոպ բյուրեղներից կազմ. ված թաղանթների հաստության և նրանց օպտիկական առանցքների ուղ. ղության որոշման համար։

ЛИТЕРАТУРА- ЭРЦЧЦЪЯ НИЗАНИ

¹В. И. Агранович, В. Л. Гинзбург, Кристаллооптика с учетом пространственной дисперсии и теория экситонов, Наука, М., 1979. ² В. А. Кизель, В. И. Бурков, Гиротропия кристаллов, Наука, М., 1980. ³ Л. Д. Ландау, Е. М. Лифшиц, Электролинамика сплошных сред, § 83, ГИФМЛ, М., 1959. ⁴ В. Н. Александров, Кристаллография, т. 15, 996 (1970). ⁵ Ф. И. Федоров, Теория гиротропии, Наука и техника. Минск, 1975. ⁶ Н. Nakano, Н. Кітига, Ј. Рhys. Soc. Japan, vol. 27, 519 (1969). ⁷ К. Шефер, Теоретическая физика, т. 3, ч. 2, ГОНТИ, 1938. ⁸ Б. В. Бокуть, А. Н. Сердюков, ЖЭТФ, т. 61, 1808 (1971). ⁹ А. Г. Иосифьян, ДАН АрмССР, т. 51, 21 (1970). ¹⁰ А. Г. Иосифьян, ДАН АрмССР, т. 55, 98 (1972). ¹¹ Р. Г. Тарханян, ДАН АрмССР, т. 53, 156 (1972). ¹² А. М. Сидорович, Изв. АН БССР, сер. физ.мат, наук. 4119—79—ДСП (1979). ¹³ М. Борн, Э. Вольф, Основы оптики, Наука, М., 1970.

220