LXXV

1982

3

УДК 519.1

МАТЕМАТИКА

Д. О. Мурадян

Минимальные нумерации двумерного цилиндра

(Представлено чл.-корр. АН Армянской ССР Р. Р. Варшамовым 15/11 1982)

Л. Х. Харпер в ряде работ (напр. (1,2)) отмечал полезность минимальных нумераций "решетчатых" графов для некоторых задач теории кодов. В частности, в (2) рассматривается двумерный тор (декартово произведение двух простых циклов) и изучаются некоторые свойства его минимальных нумераций. В (3) находятся минимальные нумерации двумерной решетки (декартова произведения двух простых цепей) и доказывается, что они являются минимальными и для тора.

Естественным продолжением этих работ предполагается исследование задачи для двумерного цилиндра (декартова произведения простой цепи и простого цикла). Этому вопросу и посвящена настоящая работа. Все не определяемые в работе понятия можно найти в монографии (4).

Пусть G(X, U)—граф со множеством вершин X(|X|=N) и множеством ребер U. Каждое взаимно-однозначное соответствие $\varphi: X \to \{1, 2, ..., N\}$ называется нумерацией графа G, а $\varphi(x)$ —номером вершины x. Пусть Φ_G —множество всевозможных нумераций графа G. Числа

$$E_{\varphi}(G) = \sum_{\substack{(x,y) \in U}} |\varphi(x) - \varphi(y)|,$$

$$E(G) = \min_{\varphi \in U_G} E_{\varphi}(G)$$

называются соответственно длиной нумерации φ и графа G. Нумерация φ_0 называется минимальной, если $E_{\varphi_0}(G) = E(G)$.

Пусть X', X''—непересекающиеся подмножества множества X. Обозначим через d(X', X'') число ребер, один конец которых принадлежит множеству X', а другой -X''. Обозначим $d(X') = d(X', X \setminus X')$ и $\varphi_{\sigma}[l, k] = \{\varphi^{-1}(l), \varphi^{-1}(l+1), \ldots, \varphi^{-1}(k)\}$, где $1 \le l \le k \le N$). В дальнейшем в случае полной ясности индекс G при записи $\varphi_{\sigma}[l, k]$ будем опускать.

Граф со множеством вершин $I^{m,n} = \{x_{l,j}\}_{l \in \overline{l,m}}$ назовем двумерным $j \in \overline{l,n}$ цилиндром (обозначим через $C^{m,n}$), если вершины $x_{l,j}$ и $x_{k,l}$ смежны тогда и только тогда, когда либо l = k и |j-l| = 1, либо j = l и |l-k| = 1

Пусть k, $l \le m$ и $1 \le s$ $t \le n$. Обозначим

$$I_{h,s}^{l,l} = \begin{cases} \{x_{i,j} \in I^{m,n} | h \leq l \leq l; \quad s \leq j \leq l\} / k \leq l \\ \{x_{i,j} \in I^{m,n} | i \in I, m \setminus l+1, \ k-1; \ s \leq j \leq l\} / \ k > l. \end{cases}$$

Множество I назовем *j*-ым циклом, а первый и *n*-ый циклы— соответственно левым и правым рубежами цилиндра.

Определение. Множество $X \subset I^{m,n}$ назовем сжатым относительно левого рубежа (правого рубежа и вершины $x_{1,1}$), если из $X \subset X$ следует $I_{1,1}^{l} \subset X$ (соответственно $I_{1,1}^{l} \subset X$ и $I_{1,1}^{l} \subset X$).

Определение. Множество $X \subset I^{m,n}$ назовем циклически сжатым, если для каждого непустого множества $(j \in \overline{I,n})$ --порожденный им подграф есть простая цепь либо цикл.

Теорема 1. Если φ —минимальная нумерация, то для любого $k\in \overline{1, mn-1}$ множество $\varphi_{C^{m,n}}[1, k]$ циклически сжато и сжато относительно хотя бы одного рубежа.

Идея доказательства теоремы заключается в следующем. Берется произвольное множество $X\subset I^{m,n}$ и преобразовывается ("сжимается") в множество $\overline{X}\subset I^{m,n}$ одинаковой с X мощностью, которое циклически сжато и сжато относительно хотя бы одного рубежа. Затем доказывается, что $d(X) \geqslant d(\overline{X})$, притом равенство имеет место тогда и только тогда, когда X также обладает указанным свойством. Из (1) известно, что для любого N-вершинного графа G и его нумерации ψ

$$E_{\psi}(G) = \sum_{i=1}^{N} d(\psi_{G}[1, i]). \tag{1}$$

Из равенства $(^1)$ и из произвольного выбора множества X легко вытекает справедливость предложения.

Определение. Нумерацию $\varphi \in \Phi_{C^{m,n}}$ назовем циклически сжатой (сжатой относительно левого рубежа, правого рубежа и вершины $x_{1,1}$), если для любого $i \in \overline{1, mn}$ множество $\varphi[1,i]$ циклически с жато (соответственно — сжато относительно левого рубежа, правого рубежа и вершины $x_{1,1}$).

Сжатость множеств и нумераций относительно остальных вершин рубежей определяется аналогично.

Теорема 2. Существует минимальная нумерация, сжатая относительно вершины $x_{1,1}$.

Схема доказательства теоремы следующая. Рассматривается произвольная минимальная нумерация φ . По предыдущей теореме она сжата относительно хотя бы одного рубежа, пусть левого (если φ сжата относительно правого рубежа, то вместо φ берется нумерация $\psi:\psi(x_{l,j})=\varphi(x_{l,n-j+1})$ ($i\in I,m,j\in I,n$), которая, очевидно, сжата относительно левого рубежа и минимальна). Далее рассматривается нумерация φ , сжатая относительно вершины $x_{l,1}$; такая, что множество номеров вершин каждого цикла при φ и φ совпадают, и показывается, что $E_{\varphi}(C^{m,n}) \gg E_{\widehat{\varphi}}(C^{m,n})$.

Замечание. Для каждой вершины рубежей существует сжатая относительно нее минимальная нумерация.

В остальной части работы описывается класс минимальных, сжатых относительно вершины $x_{1,1}$ нумераций.

Определение. Подмножество вершин X' графа G(X, U) называется сплошным при нумерации =(CM, (3)), если $\max \varphi(X) = \min \varphi(X) = |X'| - 1$.

Если подмножества вершин X', X'' графа G(X, U) сплошные при нумерации = 0 и $\min \varphi(x) = \max_{x \in X''} \varphi(x) + 1$, то этот факт запишем в следующем виде: $X'' \stackrel{\varphi}{\leftarrow} X'$.

Пусть a, \bar{a} , b, \bar{b} —произвольные натуральные числа, удовлетворяющие условиям:

$$a+\bar{a}\leqslant n; \max\{a, \bar{a}\}\leqslant \frac{m}{4}; b+\bar{b}\leqslant \frac{m}{2}; \max\{b, \bar{b}\}\leqslant \frac{n}{2}.$$

Зафиксируем две нумерации $-\varphi_0=\varphi_0(a,\ \bar a)$ и $\psi_0=\psi_0(b,\ \bar b)$ графа $C^{m,n}$

Нумерация фо задается следующим образом:

1) φ_0 сжата относительно вершины $x_{1,1}$;

2)
$$12a.a \leftarrow 1m-2a.a \leftarrow 1m.a$$
 $= [m.n-a] = 12a.n$ $= [m-2a.n] = [m.n] =$

3) для каждого $i\in\overline{1,a}$ множества $I_{1,1}^{2l,l},\,I_{1,1}^{2l-1,l},\,I_{m-2l+1,1}^{m,l}$ $I_{m-2l+2,1}^{m,l}$ сплошные, причем $I_{2l-1,1}^{2l-1,l-1}\leftarrow I_{1,l}^{2l-1,l}$ либо $I_{1,l}^{2l-2,l}\leftarrow I_{2l-1,1}^{2l-1,l}$ и $I_{m-2l+2,1}^{m-2l+2,l-1}$ $I_{m-2l+2,1}^{m-2l+2,l-1}$ $I_{m-2l+2,1}^{m-2l+2,l}$ либо $I_{m-2l+2,1}^{m-2l+2,l}$ $I_{m-2l+3,1}^{m-2l+3,l-1}$

4) для каждого $i\in\overline{1,a}$ множества $I_{1,n-l+1}^{2l,n}$, $I_{1,n-l+1}^{2l-1,n}$, $I_{m-2i+1,n-i+1}^{m,n}$, $I_{m-2i+1,n-i+1}^{m,n}$, $I_{m-2i+1,n-i+1}^{m,n}$, $I_{m-2i+1,n-i+1}^{m,n}$, $I_{m-2i+2,n-i+1}^{m,n}$, сплошные, причем $I_{1,n-i+1}^{2l-1,n-i+1}$, $I_{1,n-i+2}^{q_0}$, $I_{2i-1,n-i+2}^{q_0}$, либо $I_{1,n-i+1}^{2l-2,n-i+1}$, $I_{m-2i+2,n-i+1}^{q_0}$, $I_{m-2i+2,n-i+1}^{q_0}$, $I_{m-2i+2,n-i+1}^{m-2l+2,n}$, либо $I_{m-2i+2,n-i+1}^{m-2l+2,n}$, $I_{m-2i+2,n-i+1}^{m,n-i+1}$,

5) для любых
$$i\in 2a+1, m-2a-1, j\in a+1, n-a-1, k\in 2\overline{a+1, m-2a-1}$$

$$I_{l,1}^{l,a} \leftarrow I_{l+1,1}^{l+1,a}$$

$$I_{l,j}^{m,j} \leftarrow I_{l,j+1}^{m,j+1}$$

$$I_{k,n-a+1}^{k,n} \leftarrow I_{k+1,n-a+1}^{k+1,n}$$

Нумерация 塡 задается следующим образом:

1) ψ_0 сжата относительно вершины $x_{1,1}$;

2)
$$\begin{bmatrix} 2b.b & 12b.n-b & 12b.n & 1m.b & 1m.b & 1m.b-b & 1m.n-b & 1m.n-b & 1m.n-b & 1m.n-b & 1m.n-b-1 & 1m.n-b-1$$

3) для каждого
$$i\in\overline{1,b}$$
 множества $I_{1,1}^{2l,1}$, $I_{1,n-l+1}^{2l-1,l}$, $I_{1,n-l+1}^{2l-1,n}$ сплошные, причем $I_{2l-1,1}^{2l-1,l-1}\leftarrow I_{1,l}^{2l-1,l}$ либо $I_{1,l}^{2l-2,l}\leftarrow I_{2l-1,1}^{2l-1,l}$, и $I_{1,n-l+1}^{2l-1,n-l+1}\leftarrow I_{1,n-l+1}^{2l-2,n}\leftarrow I_{1,n-l+1}^{2l-2,n-l+1}\leftarrow I_{1,n-l+1}^{2l-2,n-l+1}\leftarrow I_{1,n-l+1}^{2l-2,n-l+1}\leftarrow I_{1,n-l+1}^{2l-2,n-l+1}$

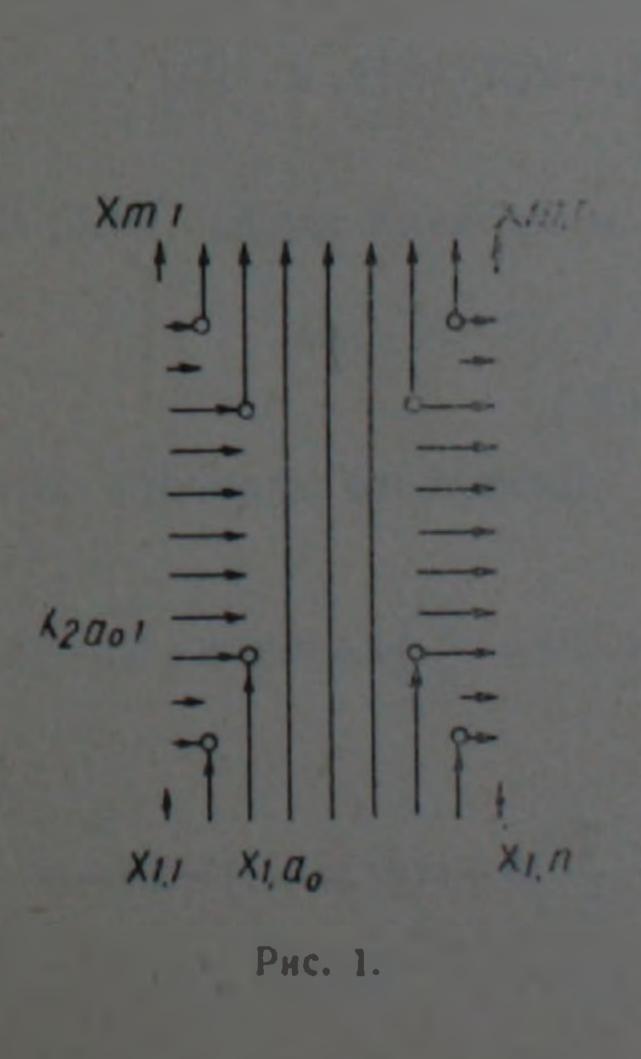
4) для каждого $i\in\overline{1,\overline{b}}$ множества $\lim_{m-2l+1,1}^{m,l}$, $\lim_{m-2l+2,1}^{m,l}$, $\lim_{m-2l+1,n-l+1}^{m,n}$ сплошные, причем $\lim_{m-2l+2,1}^{m-2l+2,l}$ $\lim_{m-2l+2,l}^{m,l}$ либо $\lim_{m-2l+2,l}^{m-2l+2,l}$ $\lim_{m-2l+2,l}^{m-2l+2,l}$ $\lim_{m-2l+2,l}^{m-2l+2,l}$ $\lim_{m-2l+2,l}^{m-2l+2,l}$ $\lim_{m-2l+2,l}^{m-2l+2,l}$ либо $\lim_{m-2l+2,l}^{m-2l+2,l}$ $\lim_{m-2l+2,l}^{m-2l+2,l}$ $\lim_{m-2l+2,l}^{m-2l+2,l}$ $\lim_{m-2l+2,l}^{m-2l+2,l}$ либо

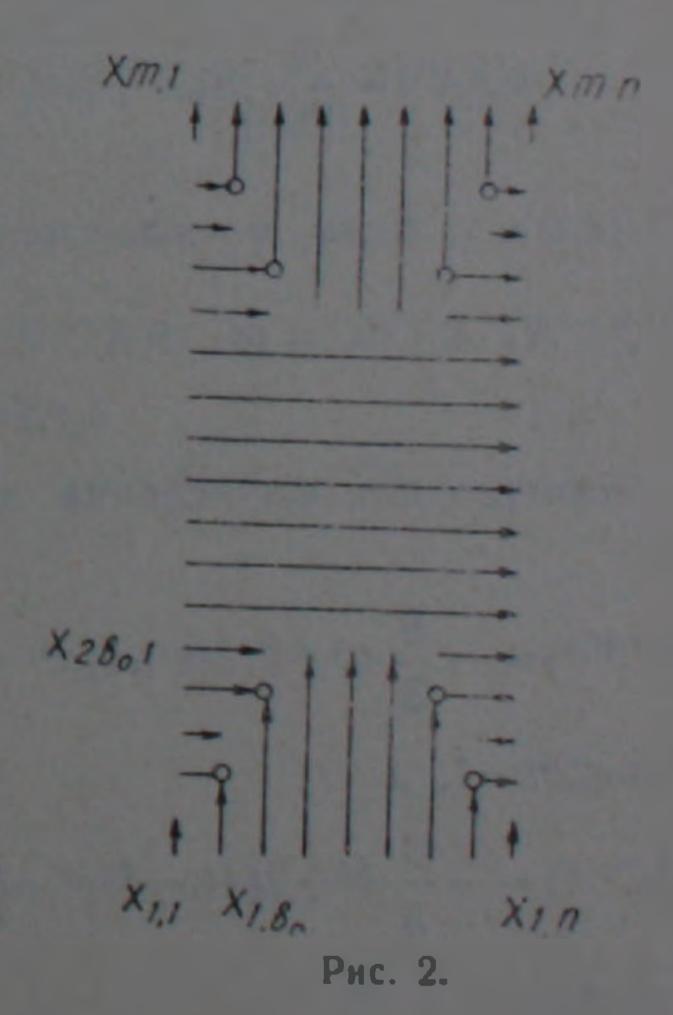
5) для любых
$$i \in b+1, n-b-1$$
, $j \in 2b+1, m-2\overline{b}-1, k \in \overline{b+1}, n-\overline{b}-1$
$$I_{1,i}^{2b,l} \leftarrow I_{1,i+1}^{2b,l+1}$$

$$I_{j,1}^{l,n} \leftarrow I_{j+1,1}^{l+1,n}$$

$$I_{m-2\overline{b}+1,k}^{m,k} \leftarrow I_{m-2\overline{b}+1,k+1}^{m,k+1}.$$

Нумерации φ_0 , ψ_0 изображены схематично соответственно на рис. 1, 2. На этих рисунках множество вершин, лежащих на каждой стрелке, — сплошное, причем помеченные кружком вершины принадлежат одной из смежных стрелок. Направление стрелки указывает, естественно, на порядок нумерации вершин, лежащих на этой стрелке. Оно гарантирует сжатость нумераций относительно вершины $x_{1,1}$.





Теорема 3. Нумериция φ , сжатая относительно вершины $x_{1.1}$, является минимальной тогда и только тогда, когда

$$\varphi = \begin{cases} \varphi_0(a, \overline{a})/m \leq 2n - 1 \\ \psi_0(b, \overline{b})/m \geq 2n \end{cases}$$

при следующих значениях $a, \overline{a}, b, \overline{b}$:

$$\left| \frac{2m - 1 - \sqrt{2m^2 - 2m + 1}}{4} \right| \le a, \bar{a} \le \left[\frac{2m + 3 - \sqrt{2m^2 - 2m + 1}}{4} \right] \tag{2}$$

$$\left| \frac{4n - 3 - \sqrt{8n^2 - 8n + 1}}{4} \right| \leq b, \overline{b} \leq \left| \frac{4n + 1 - \sqrt{8n^2 - 8n + 1}}{4} \right| \tag{3}$$

Замечание. Основываясь на теоремах 1—3 и на соотношении (1), можно построить полное описание множества минимальных нумераций двумерного цилиндра.

Теорема 3 доказывается через ряд утверждений, в каждом из которых устанавливается некоторое необходимое условие минимальности нумераций, сжатых относительно вершины $x_{1.1}$. Затем доказывается, что условие одновременного выполнения указанных условии для минимальности нумераций, сжатых относительно вершины $x_{1.1}$, является достаточным.

Общая схема доказательств указанных утверждений следующая: утверждение предполагается неверным и, опираясь на сжатость (а также на минимальность) нумерации и на условия данного утверждения, отыскиваются два множества вершин, которые находятся в противоречии со следующей леммой из (3).

Пусть X' некоторое подмножество вершин N-вершинного графа G и $\min \varphi(x) = l$, $\max \varphi(x) = k$ при некоторой нумерации $\varphi \in \Phi_G$. Обозначим:

$$\delta_{\varphi}(X') = \frac{1}{|X'|} \left\{ d(X', \varphi[k+1, N]) - d(X', \varphi[1, l-1]) \right\}.$$

Лемма. Если φ —минимальная нумерация графа G(X, U), а

$$X', X'' \subset X, X' \cap X'' = \emptyset, d(X', X'') = 0 \quad u \quad X'' \stackrel{\varphi}{\leftarrow} X', mo$$

$$\delta_{\varphi}(X'') \leq \delta_{\varphi}(X').$$

Формула для вычисления длины двумерного цилиндра следующая:

$$E(C^{m,n}) = -\frac{8}{3}a^3 + 2(2m+1)a^2 - \left(m^2 + 3m - \frac{2}{3}\right)a + mn(m+2) - 2n - m$$

при m ≤ 2n - 1, и

$$E(C^{m,n}) = -\frac{8}{3}b^3 + 2(4n-1)b^2 - \left(4n^2 - \frac{2}{3}\right)b + mn(2n+1) - 2n - m$$

при $m \ge 2n$.

Заметим, что как в (2), так и в (3) нижние и верхние оценки a и b "почти всегда" совпадают. При несовпадении же они отличаются на единицу, и нет разницы, какие из них взять как значения для a и b.

Республиканский информационный вычислительный центр (РИВЦ) Министерства здравоохранения АрмССР

Դ. Հ. ՄՈՒՐԱԴՅԱՆ

Երկչափ գլանի մինիմալ ճամարակալումները

Դիտարկննք X(|X|=N) գագածննրի բազմուծ լամբ G դրաֆը։ Ամեն և $X=\{1,2,\ldots,N\}$ փոխմիարժեք համապատասխանուծ լուն կոչվում է G գրաֆի համարակալում, և համարակալումը կոչվում է մինիմալ, հծև կից գագածների համարննրի տարբերուծ լունննրի բացարձակ արժեքների գուժմարը ամենափոքրն է (նչված մինիմալ գումարը նչանակենք E(G)-ով)։

Աշխատան բում դետարկվում է $C^{m,n}$ հրկչափ գլանը՝ m հրկարությամր և արտադրլալը և ենտագրվում է նրա մինիմալ համարակալումների դասը։ $E(C^{m,n})$ -ի հաշվվման րանաձևը։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

¹ L. H. Harper, J. Soc. Indust. Appl. Math., vol. 12, № 1 (1964). ² L. H. Harper. J. Appl. Prob., vol. 4, № 2 (1967). ³ Д. О. Мурадян, Т. Э. Пилипосян, ДАН АрмССР, т. 70, № 1 (1980). ⁴ Ф. Харари, Теорня графов, Мир, М., 1973.