LXXIV 1982

УДК 519.833.5

МАТЕМАТИКА

Н. И. Наумова

О-доминирование в кооперативных играх

(Представлено чл.-корр. АН Армянской ССР Р. Р. Варшамовым 12/11 1982)

В данной работе для общей кооперативной игры (I, A, w, $\{P_i\}_{i\in I}$) предлагается новое отношение группового предпочтения. Для него изучаются условия непустоты C-ядра и существования внешне устойчивого C-ядра. В случае классической кооперативной игры вводится соответствующее новое отношение предпочтения на множестве дележей, называемое O-доминированием. Для классической кооперативной игры 3 лиц построены все HM-решения (1) для O-доминирования и показано, что HM-решение всегда существует. Игра 10 лиц Лукаса, не имеющая HM-решения для классического доминирования (2), имеет единственное HM-решение для O-доминирования.

Общей кооперативной игрой называется набор $(I, A, w, \{P_i\}_{i\in I})$ где I--множество игроков, A-множество альтернатив, |A| > 1, w-характеристическая функция, т. е. отображение, ставящее в соответствие каждому $S \subset I$ множество $w(S) \subset A$, причем $w(\emptyset) = \emptyset$, w(I) = A, P_i -антирефлексивное отношение предпочтения игрока i на множестве альтернатив A. Обычно w(S) трактуется как множество альтернатив, достижимых коалицией S, и рассматривается следующее отношение группового предпочтения $P = P(w, |P_i|_{i \in I})$ на множестве A: xP_i , если существует такое $S \subset I$, что $x \in w(S)$ и $xP_i y$ для всех $x \in S$.

Здесь будем трактовать w(S) как множество альтернатив, неудовлетворенность которыми коалиция S имеет право высказывать, и рассматривать следующее отношение группового предпочтения $H = H(w, \{P_i\}_{i \in I})$ на множестве A: xHy, если существует такое $S \subset I$, что $y \in w(S)$ и $xP_i y$ для всех $i \in S$.

С-ядром антирефлексивного отношения R на множестве A называется $C(A, R) = \{x \in A : \text{ не } yRx \text{ для всех } y \in A\}.$

Множество $V \subset A$ называется внешне устойчивым для отношения R на A, если для любого $y \in A \setminus V$ существует $x \in V$, для которого $x \in X$.

Множество $V \subset A$ называется внутренне устойчивым для отношения R, если не существуют x, $y \in V$, для которых xRy.

HM-решением отношения R на A называется такое $V \subset A$, которое внешне и внутренне устойчиво для R на A.

В работе (3) для конечного А получено необходимое и доста-

точное условие непустоты $C(A, P(w, \{P_i\}_{i \in I}))$ при любых ацикличес-ких P и фиксированных I, A, w.

Теорема 1. Если множество альтернатив A конечно, то $C(A, H(w, \{P_i\}_{i\in I})) \neq \emptyset$ при любых ациклических P_i тогда и только тогда, когда $C(A, P(w, \{P_i\}_{i\in I})) \neq \emptyset$ при любых ациклических P_i .

Теорема 2. Пусть множества А, І конечны, тогда равно-

сильны следующие утверждения:

- 1) $C(A, P(w, \{P_i\}_{i\in I}))$ внешне устойчиво на A для $P(w, \|P_i\|_E)$ при любых антирефлексивных транзитивных P_i :
- 2) $C(A, H(w, |P_i|_{i\in I}))$ внешне устойчиво на A для $H(w, |P_i|_{i\in I})$ при любых антирефлексивных транзитивных P_i ;
- 3) при $|A| \geqslant 3$ существует такое Q = A и если $w(S) \neq \emptyset$, то Q = A и если $S_1 \cap S_2 \neq \emptyset$.

Классической кооперативной игрой называется пара (I, v), где I—множество игроков, v—функция, ставящая в соответствие каждому $S \subset I$ число v(S)—максимальную сумму выигрышей, которую S может себе обеспечить, действуя самостоятельно. В качестве множества альтернатив берется $A = \{x(R^{III}: x_i \gg v(\{i\}), i \in I, \sum_{i \in I} x_i = v(I)\}$, называемое множеством дележей. Отношения P_i фиксированы, $xP_i y$ тогда и только тогда, когда $x_i > y_i$. Обычно берут $w(S) = \{x \in A: \sum_{i \in S} x_i \leqslant v(S)\}$ и тогда отношение P является отношением доминирования, введенным в (i). Однако для произвольной v трудно трактовать элементы w(S) как дележи, достижимые коалицией S.

Здесь для классичесной кооперативной игры рассмотрим прежние P_t , $A \subset \{x \in R^{|I|}: \sum_{l \in I} x_l = v(I)\}$ и возьмем следующую $w: w(S) = \{x \in A: \sum_{l \in S} x_l < v(S)\}$, т. е. w(S)—множество векторов выигрышей, при которых коалиция S обижена. Тогда получаем следующее отношение H на множестве A: xHy, если существует такое $S \subset I$, что $\sum_{l \in S} y_l < v(S)$ и $x_l > y_l$ при всех $i \in S$. (Для обиженной коалиции предпочтительнее любой вектор выигрышей, более выгодный всем ее членам). Такое отношение H будем называть O-доминированием.

Теорема 3. Если (I, v)—классическая кооперативная игра 3 лиц, то V—НМ-решение O-доминирования на $\overline{A} = \begin{cases} x \in \mathbb{R} : \\ X \in \mathbb{R} \end{cases}$

= v(I) тогда и только тогда, когда выполняется одно из условий:

- 1) V-HM-решение О-доминирования на $A = \{x \in A : x_i \ge v(\{i\}), i = 1, 2, 3\};$
 - 2) $V = \{x\}, x \in \overline{A}, x_i < v(\{i\}), x_j \le v(\{j\}), x_k \le v(\{k\}), \{i, j, k\} = \{1, 2, 3\};$
- 3) $V = \{x \in \overline{A}: x_i = a, x_j \geqslant v(\{j\}), x_k \geqslant v(\{k\})\}, \text{ где } v(I) v(\{j, k\}) \leqslant a \leqslant v(\{i\}).$

Замечание. Теорема 3 верна и при замене \overline{A} на симплекс, содержащийся в \overline{A} .

В дальнейшем будем искать IIM-решение на множестве дележей $A = \{x \in \mathbb{R}^3 : x \ge v(|i|), i = 1, 2, \dots, z = v(|i|)\}$ Тогда как и для обычного доминирования можно считать, что v (0-1) редуцирована, т. е. $v(\{i\}) = 0$, i = 1, 2, 3, v(I) = 1, $0 \le v(S) \le v(I)$ для всех $S \subseteq I$

Обозначим $C = \{x \in A : x_i + x_k \ge v(i, k)$ для всех $i, k \in I\}$.

Теорема 4. Если (I, v)—классическая кооперативная игра 3 лиц c (0-1)-редуцированной v, то V-HM-решение O-доминирования на $A = \left\{x \in \mathbb{R}^3 : x_i \ge 0, \sum_{i=1}^3 x_i = 1\right\}$ тогда и только тогда, когда меет место один из случаев;

- 1) $V = C \cup \{x \in A : 0 \le x_k \le v(i, k) + v(j, k) 1, x_l = f_l(x_k), x_j = f_j(x_k)\}$, где f_l , f_j —непрерывные невозрастающие функции $x_k + f_l(x_k) + f_j(x_k) = 1$, $f_l(v(i, k) + v(j, k) 1) = 1 v(j, k)$, $v(i, j) + v(i, k) \le 1$, $v(i, j) + v(j, k) \le 1$;
- 2) $V = C \bigcup |x \in A: x_i + x_k = v(i, k)| \bigcup \{x \in A: x_j + x_k = v(j, k)\}$ и $v(i, k) + v(j, k) \le 1$ для некоторых i, j, k;
- 3) $V = C \bigcup \{x \in A : x_i + x_j = v(i, j)\} \bigcup \{x \in A : 0 \le x_k \le 1 2v(i, j), x_i = x_k\}$ $x = f(x_k)$ $x \in f$
- 4) $V = C \cup \{x \in A : b \leq x_k \leq a, x_i + x_k = v(i, k)\} \cup \{x \in A : b \leq x_k \leq a, x_j + x_k = v(j, k)\} \cup \{x \in A : x_k = a, x_i + x_k \leq v(i, k)\} \cup \{x \in A : x_k = a, x_j + x_k \leq v(j, k)\}, \quad \text{where } b = \max\{1 v(i, j), v(i, k) + v(j, k) 1\}, b \leq a \leq \min\{\frac{1}{2}, v(i, k), v(j, k)\}.$
- 5) $V = C \cup \{x \in A : b \leq x_k \leq v(j, k), x_j + x_k = v(j, k)\} \cup \{x \in A : b \leq x_k \leq v(j, k), x_i + x_k = v(i, k)\} \cup \{x \in A : 0 \leq x_i \leq v(i, k) v(j, k), x_j = f_j(x_i), x_k = f_k(x_i)\}, \text{ ide } b = \max\{1 v(i, j), v(i, k) + v(j, k) 1\}, f_j, f_k \text{невоз-растающие непрерывные функции, } x_i + f_j(x_i) + f_k(x_i) = 1, f_k(v(i, k) v(j, k)) = v(j, k)$ u $v(i, k) > v(j, k), v(i, k) + v(j, k) \leq 1$.

6)
$$V = \left\{ \left(\frac{1}{2}, \frac{1}{2}, 0 \right), \left(0, \frac{1}{2}, \frac{1}{2} \right), \left(\frac{1}{2}, 0, \frac{1}{2} \right) \right\} u \ v(i, j) >$$

$$> \frac{1}{2} \partial_{AB} \sec i \neq j;$$

7)
$$V = \{x \in A : x_k = a\}, \ r\partial e \ a < \frac{1}{2}, \ 1 - v(i, j) \le a \le v(i, k) + v(j, k) - 1.$$

Следствие. Любая кооперативная игра 3 лиц имеет НМ-решение для О-доминирования на множестве дележей, так как любая v удовлетворяет хотя бы одному из условий, описанных в случаях 2), 3). Игра Лукаса 10 лиц, не имеющая НМ-решения в случае обычного доминирования (2), имеет для O-доминирования единственное НМ-решение, не совпадающее с C-ядром.

Ленинградский государственный университет

Ն. Ի. ՆԱՈՒՄՈՎԱ

Կոոպեrատիվ խաղեrի *Օ*-դոմինանտությունը

որոնց համար սահմանվում է Օ-դոմինանտության հարարերությունը և խաշ որոնց համար սահմանվում է Օ-դոմինանտության հարարերությունը և խաշ

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

1 Дж. фон Нейман, О. Моргечштерн, Теория игр и экономическое повеление, М., 1970. 3 W. F. Lucas, Bull. Amer. Math. Soc., v. 74, № 2 (1968). 3 Sh. Ishikawa K. Nakamura, J. Oper. Res. Soc. Jap., v. 22, № 3 (1979).