LXXIV

1982

МЕХАНИКА

УДК 539.311

В. А. Арсенян

О напряжениях в бесконечной плоскости и в весомой полуплоскости, ослабленных двумя прямоугольными отверстиями

(Представлено чл.-корр. АН Армянской ССР О. М. Сапонджяном 15/1Х 1981)

1. Рассмотрим упругую бесконечную плоскость с двумя симметрично расположенными прямоугольными отверстиями, по краям которых приложены равномерно-распределенные нормальные усилия. Расстояние центра тяжести каждого прямоугольника L_k (k=1,2) с основанием b и высотой h (рис. 1) от начала координатных осей OX и OY обозначим через R (R>b/2).

Для решения поставленной задачи в упругой бесконечной области S будем искать две аналитические функции $\varphi(z)$ и $\psi(z)$, которые имеют известные представления (1). При этом граничные условия поставленной задачи почти всюду на L приводятся к следующему интегральному уравнению:

$$\omega(t_{0}) + \frac{1}{2\pi i} \int_{L} \omega(t) d\ln \frac{t - t_{0}}{\overline{t} - \overline{t_{0}}} - \frac{1}{2\pi i} \int_{L} \overline{\omega(t)} d\frac{t - t_{0}}{\overline{t} - \overline{t_{0}}} + \sum_{k=1}^{2} \frac{b_{k}}{\overline{t_{0}} - \overline{z_{k}}} =$$

$$= pt_{0} + C_{k}; \quad z_{1} = R; \quad z_{2} = -R;$$

$$b_{h} = \frac{1}{2\pi i M_{k}} \int_{L} \{\omega(t) d\overline{t} - \overline{\omega(t)} dt\}; \quad C_{k} = -\frac{1}{N_{k}} \int_{L} \omega(t) ds. \quad (1.2)$$

Здесь $\omega(t)$ —подлежащая определению комплексная непрерывная функция. В окрестности угловых точек a_{k} ($k=1, 2; \ l=1, 2, 3, 4$) $\omega(t)$ имеет следующую асимптотику (2):

$$\omega(t) = A_{hj} \left(\frac{t - a_{hj}}{T_{kj} - a_{hj}} \right)^{\lambda} + \sum_{r=0}^{\infty} B_{kj}^{(r)} \left(\frac{t - a_{hj}}{T_{hj} - a_{hj}} \right)^{r}, \tag{1.3}$$

где T_{kj} —фиксированные точки на контуре L удовлетворяющие условиям $\arg(T_{kj}-a_{kj})=\arg(t-a_{kj});\ \lambda=0,5445$ постоянная, являющаяся корнем характеристического уравнения $\sin^2\lambda\alpha=\lambda^2\sin^2\alpha$ с наименьшей положительной действительной частью для угла $\alpha=3/2$

В (1.2) M_k и N_k —действительные постоянные, выбираемые по удобству (3) в процессе решения (1.1).

Учитывая циклическую симметрию задачи, уравнение (1.1) приводим к виду (4):

$$\omega(t_0) + \frac{1}{2-i} \int_{L_1}^{\infty} \omega(t) dK_1(t, t_0) - \frac{1}{2-i} \int_{L_2}^{\infty} \overline{\omega(t)} dK_2(t, t_0) + \sum_{i=1}^{2} \frac{b_1}{\overline{t_0 - z_h}} = pt_0 + C_1,$$
(1.4)

$$K_{1}(t, t_{0}) = \ln \frac{t - t_{0}}{\overline{t} - \overline{t_{0}}} - \ln \frac{t + t_{0}}{\overline{t} + \overline{t_{0}}}; \qquad K_{2}(t, t_{0}) = \frac{t - t_{0}}{\overline{t} - \overline{t_{0}}} - \frac{t + t_{0}}{\overline{t} + \overline{t_{0}}}, \qquad (1.5)$$

где плотность $\omega(t)$ определяется только в точках верхней половины контура L_1 . Значения ее в точках нижней половины контура L_1 определяются из условия зеркальной симметрии: $\omega(t_0) = \overline{\omega(t_0)}$, для $t_0 = \overline{t_0} \in L_1$

Интегралы, входящие в (1.4), понимаются в смысле Стилтьеса. Как показано в (2), к интегральному уравнению (1.4) можно применять теорию Фредгольма. Будем решать это уравнение методом последовательных приближений.

Для численного решения (1.4) на сторонах l_k ($k=1,\ldots 4$) прямоугольника L_1 (рис. 1) равномерным делением выбираются точки, соответственно числом n_1 , n_2 , n_3 и $n_4=n_2$. Их будем называть основными опорными точками (ООТ). Эти точки не совпадают с угловыми. Для решения (1.4) построим последовательные приближения, заменив в (1.4) интегралы Стилгьеса интегральными суммами Стилтьеса. При этом будем иметь:

$$\omega_{0}(t_{0j}) = pt_{0j}; \quad \omega_{N}(t_{0l}) = -\frac{1}{2\pi i} \sum_{\substack{i=1\\i\neq l}}^{m} \omega_{N-1}(t_{0l}) \{K_{1}(t_{i+1}, t_{0l}) - K_{1}(t_{l}, t_{0l})\} + \frac{1}{2\pi i} \sum_{\substack{i=1\\l\neq l}}^{m} \overline{\omega_{N-1}(t_{0l})} \{K_{2}(t_{i+1}, t_{0l}) - K_{2}(t_{l}, t_{0l})\} - \frac{b_{1}}{\overline{t_{0l}} - R} - \frac{b_{1}}{\overline{t_{0l}} + R} - C_{1};$$

$$j = 1, 2, \ldots, n; \quad n = \sum_{k=1}^{4} n_{k}; \quad i = 1, 2, \ldots, m; \quad m = \sum_{k=1}^{4} m_{k}; \quad m_{k} > n_{k}.$$

С целью повышения точности вычислений интегральные суммы, входящие в (1.6), вычисляются на более мелкой сетке дополнительных опорных точек (ДОТ) общим числом m_* включающей в себя точки ООТ (ср. (5)). Причем на отрезках длиною Δ_k ($\Delta_k = l_k/n_k$, $k=1,\ldots 4$), примыкающих к угловым точкам, вводится локальная сетка с переменным шагом (8). Вычисление всех итераций (1.6) производится только в точках ООТ, а в точках ДОТ они определяются интерполированием. Для этого на средних участках сторон l_k строятся кубические сплайны, а на крайних ее участках используются представления (1.3).

Результаты вычислений на ЭВМ, проведенные для шести различных расстояний d=2R-b между границами двух одинаковых отверстий с размерами b=1, 2 и h=0.8, при v=2 в (1.3), приведены в табл. 1.

Значения тангенциальных нормальных напряжений $\sigma(t_1)$ p ($t=1,2,\ldots,7$) приведены в следующих характерных точках контура: $t_1=d/2$: $t_2=(d+i(h-h/n_1))/2$; $t_3=(d+b/n_2+ih)/2$; $t_4=R+ih/2$; $t_5=(2R+b-b/n_2+ih)/2$; $t_6=t_2+b$; $t_7=t_1+b$. В табл. 1 приведены также максимальные погрешности σ в процептах от напряжений p, полученные при проверке граничного условия задачи, при числе итераций N. Для случая $\nu=0,2$ на рис. 1, 2 показаны линии равных напряжений σ_{\max}/p , σ_{\min}/p и σ_{\max}/p , определяемых формулами:

d	0.2	0.4	0.6	0.8	1.0	1.2
M_1	3.0	2.75	2.5	2.25	2.0	1.75
N_1	22.5	20.625	18.75	16.875	15.0	13.125
n_1	22	26	30	32	36	40
n ₂	30	30	30	30	30	30
n_3	42	42	42	40	40	40
5 %	2.9	3.6	3.6	2.9	3.7	4.0
N	43	53	45	50	39	35
$\sigma_{y}(t_{1}) p$	-2.28	-1,46	-0.95	- 0.63	-0.44	-0.31
$s_{y}(t_{2})p$	-2.79	2.72	-2.71	—2.63	-2.70	-2.71
3.r(t3) P	-0.18	-0.46	-0.74	-0.92	-1.09	-1.21
$G_X(t_4)/p$	0.5	0.5	0.49	0.48	0.47	0.45
5.r(15) P	-1.65	-1.58	-1.54	— 1.50	-1.49	-1.48
$\sigma_{y}(t_{n})p$	-3.13	-2.92	-2.82	-2,71	-2,65	-2.60
Jy(t-)/p	0,26	-0,18	-0.14	-0.11	0.09	0.07



$$\sigma_{\max} = \frac{\sigma_x + \sigma_y}{2} \pm \frac{1}{2} \sqrt{(\sigma_x - \sigma_y)^2 + 4\tau_{xy}^2}; \quad \tau_{\max} = \frac{\sigma_{\max} - \sigma_{\min}}{2}. \quad (1.7)$$

Приведем результаты численного эксперимента, позволяющего определить влияние значения λ , показателя главного члена асимптотики (1.3), на точность выполнения граничного условия задачи. Для этого показателю λ задавались несколько значений и при каждом из них, вычислив итерации (1.6), проверялись граничные напряжения. Вычисления показали, что наивысшая точность получается, когла $\lambda = 0,5445$, т.е. является корием трансцендентного уравнения $\sin^2 \lambda a = 0,5445$, т.е. является корием трансцендентного уравнения $\sin^2 \lambda a = 0,5445$, т.е. является корием трансцендентного уравнения $\sin^2 \lambda a = 0,5445$, т.е. является корием трансцендентного уравнения $\sin^2 \lambda a = 0,5445$, т.е. является корием трансцендентного уравнения $\sin^2 \lambda a = 0,5445$, т.е. является корием трансцендентного уравнения $\sin^2 \lambda a = 0,5445$, т.е. является корием трансцендентного уравнения $\sin^2 \lambda a = 0,5445$, т.е. является корием трансцендентного уравнения $\cos^2 \lambda a = 0,5445$, т.е. является корием трансцендентного уравнения $\cos^2 \lambda a = 0,5445$, т.е. является корием трансцендентного уравнения $\cos^2 \lambda a = 0,5445$, т.е. является корием трансцендентного уравнения $\cos^2 \lambda a = 0,5445$, т.е. является корием трансцендентного уравнения $\cos^2 \lambda a = 0,5445$, т.е. является корием трансцендентного уравнения $\cos^2 \lambda a = 0,5445$, т.е. является корием трансцендентного уравнения $\cos^2 \lambda a = 0,5445$, т.е. является корием трансцендентного уравнения $\cos^2 \lambda a = 0,5445$, т.е. является корием трансцендентного уравнения $\cos^2 \lambda a = 0,5445$, т.е. является корием трансцендентного уравнения $\cos^2 \lambda a = 0,5445$, т.е. является корием трансцендентного уравнения $\cos^2 \lambda a = 0,5445$, т.е. является корием трансцендентного уравнения $\cos^2 \lambda a = 0,5445$, т.е. $\cos^2 \lambda a = 0,5445$, т.е.

=)2 sin2 а при а -3/2 л, причем это подтверждалось при различных расстояниях а между границами отверстий. В табл. 2 приведены максимальные погрешности $\delta(d)$ (при $d=0,2;\ 0.4;\ 0.6)$ выполнения граничного условия в процентах от р, при нескольких значениях /

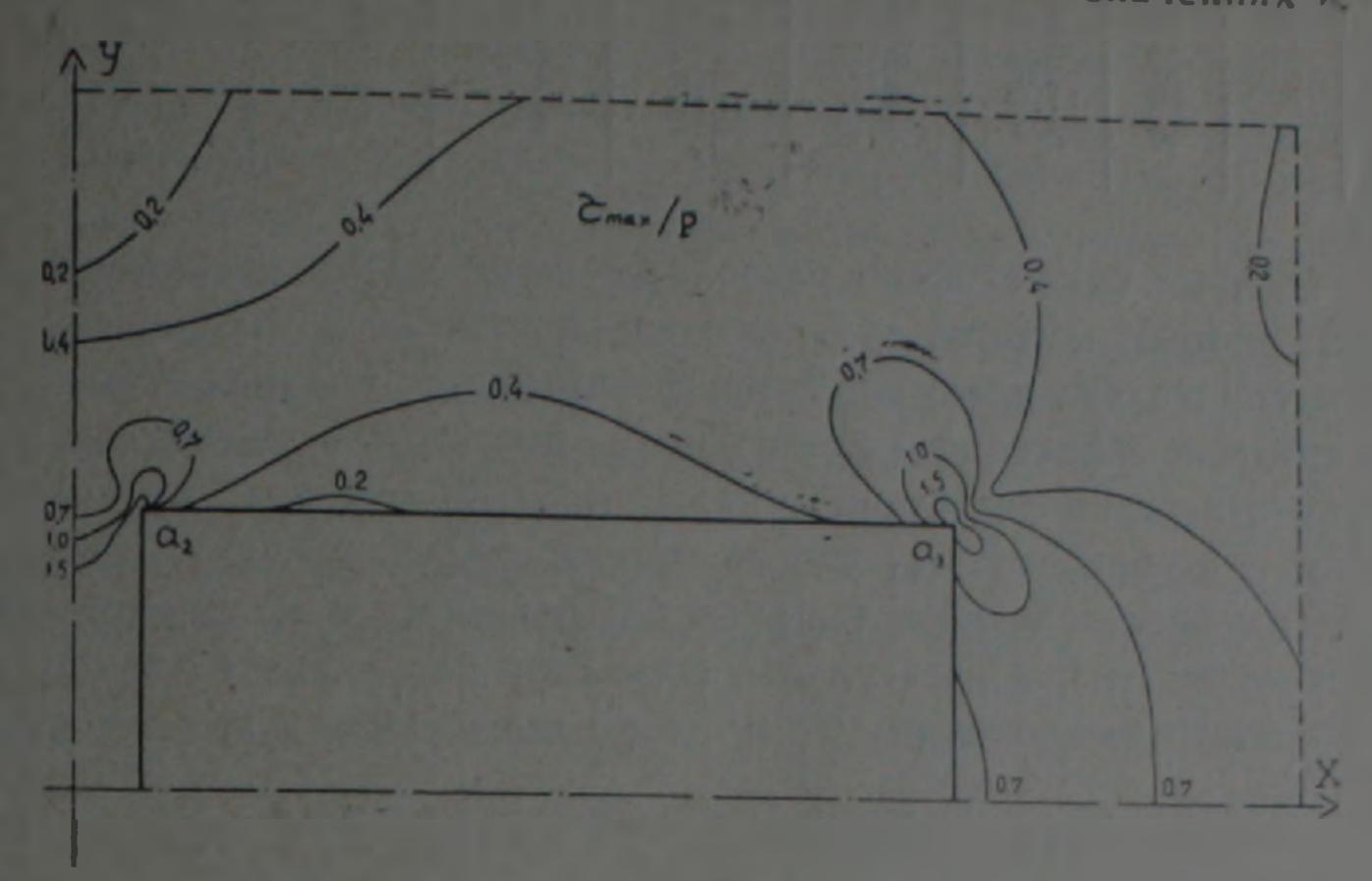


Рис. 2

					7	аблица
8(0,2) % 8(0,4) % 8(0,6) %	0,4 7,4 5,9 6,0	0,5 6,0 4,1 4,1	0.5445 2.9 1.5 1.0	0.6 3.7 2.0 1.9	0.7 8.0 5.9 5.6	0,8 11.8 9,6 8,9

Отметим, что точность численного решения (1.4) зависит как от использования асимптотики (1.3), так и от выбора сетки разбнения всего контура. Выбор сетки нужно контролировать проверкой точности выполнения граничного условия задачи. Анализ решений этой задачи показывает, что в окрестности угловых точек требуется ввести локальную дискретизацию контура, согласно асимптотике решения в окрестности этих углов. Поведение плотности и ее производных на отдельных сторонах прямоугольника зависит как от внешнеи нагрузки, так и от отношения размеров этих сторон и расстояния между отверстиями. Вследствие этого поведение плотности и ее производной на разных сторонах прямоугольника различно. Это приводит к необходимости введения различной дискретизации контура.

В табл. З приведены значения максимальных погрешностей (1) выполнения граничного условия в процентах от р, вычисленные в тех же характерных точках и контура, рассмотренных в табл. 1. при разных соотношениях числа точек ООТ на сторонах прямоугольника.

Приведенные в табл. 3 результаты соответствуют случаю d=0.2Как видно из этой таблицы, точность решения зависит от отношении n_1/n_2 и n_2/n_3 . При $n_1/n_3=2/3$ и $n_2/n_3=3/4$ получается наименьшая погрешность при общем числе точек, не превосходящем 130.

2. Рассмотрим теперь задачу о равновесии весомой полуплос-

n ₁	n ₂	na	6(t ₁)%	8(t2)%	8(13)%	8(14)%	₹(t ₅)%	5(t ₆)%	6(1,)%
20	30	20	2.0	2.6	2,8	1.3	2.6	11.5	5.2
30	35	30	3.4	15.9	2,0	1.3	2.1	8.3	1.6
40	20	30	11.0	19.7	5,8	4.7	2.1	2.4	5.0
20	30	40	2.1	2.7	2,5	1.2	0.6	1.7	0.9

кости с двумя симметрично расположенными прямоугольными отверстиями, центры которых удалены на расстояние f от границы L_0 . В данном случае нас преимущественно интересует напряженное состояние среды в окрестности контуров L_k , достаточно удаленых от L_0 . Так как отверстия достаточно удалены от L_0 , то без заметной погрешности можно считать, что в точках среды, примыкающих к L_0 нормальные составляющие напряжений равны σ_x^{∞} и σ_y^{∞} (напряжениям на бесконечности), а касательная составляющая равна нулю (7).

Искомые напряжения $\sigma^{(1)}$, $\sigma^{(1)}$ и представим в виде суммы (7):

$$\sigma_x^{(1)} = \sigma_x^0 + \sigma_x; \quad \sigma_y^{(1)} = \sigma_y^0 + \sigma_y; \quad \tau_{xy}^{(1)} = \tau_{xy}^0 + \tau_{xy}, \tag{2.1}$$

где σ_x^0 , σ_y^0 и τ_{xy} —напряжения в сплошной весомой среде, удовлетворяющие указанным условиям на бесконечности и определяемые формулами:

$$\sigma_x^0 = n\rho g(y - f) + \sigma_x^{\infty}; \quad \sigma_y^0 = \rho g(y - f) + \sigma_y^{\infty}; \quad \tau_{xy}^0 = 0. \tag{2.2}$$

В (2.2) n—постоянная, зависящая от упругих свойств среды, ρ —плотность среды, g—ускорение силы тяжести. Напряжения σ_x , σ_y и σ_{xy} в (2.1) обусловлены наличием отверстий.

Следуя (7), напряжения 7 , 9 и 7 ху можем определить с помощью упругих потенциалов $\varphi(z)$ и $\psi(z)$, аналитических в бесконечной области S и исчезающих на бесконечности, заменив полубесконечную область, занятую упругой средой, на бесконечную плоскость. При этом граничное условие задачи записывается только на контурах отверстий и имеет вид (7):

$$\varphi(t) + t\overline{\varphi'(t)} + \overline{\psi(t)} = (k_1 + k_2)t/2 - (k_1 - k_2)\overline{t}/2; \qquad (2.3)$$

$$k_1 = n\rho g f - \sigma_x^{\infty}; \quad k_2 = \rho g f - \sigma_y^{\infty}. \tag{2.4}$$

Рассмотрим случай, когда n=1 и $\sigma_x = \sigma_y = \sigma^\infty$. Тогда в правой части (2.3) $f(t) = (\rho g \ f - \sigma^\infty) t = p_1 t$, что по существу совпадает с правой частью f(t) = pt уравнения (1.1) предыдущей задачи. Исходя из этого, используем результаты предыдущей задачи и искомые напряжения определим формулами:

$$\sigma_{y}^{(1)} = (\sigma_{y}/p - 1) p_{1}; \quad \sigma_{y}^{(1)} = (\sigma_{y}/p - 1) p_{1}; \quad \tau_{xy}^{(1)} = \tau_{xy} p_{1}/p, \qquad (2.5)$$

где σ_x/p , σ_y/p и τ_{xy}/p —решения в окрестности контуров L_k , полученные для случая равномерно-распределенного нагружения по контурам отверстий.

Ереванский политехнический институт им. К. Маркса

լուկու ուղղանկյունաձև անցքեւով թուլացված անվեւջ հաւթությունում և կշիս ունեցող կիսահաւթությունում առկա լաւումնեւի մասին

թվային եղանակով լուծվում է Շերման-Լաուրիչելլայի ինտեգրալ Հավասարումը երկու ուղղանկյունաձև անցքերով թուլացված անվերջ տիրույթի Նորմալ լարումներ։ Ընդ որում դիտարկվում են անցքերի միջև տարբեր Հեռավորությունների մի քանի դեպքեր։

Աշխատանքում ցույց է տրվում, նե ինչպես ինտեգրալ հավասարման լուծման ասիմպտոտիկայի հաշվառումը նվային լուծման մեջ բերում է այդ հավասարման էֆեկտիվ լուծմանը անկյուններ ունեցող տիրույնի համար։

Դիտարկվում է նաև կշիռ ունեցող կիսահարթության իւնդիրը, երբ այն թուլացված է նրա եղրադծից բավականաչափ հեռու գտնվող երկու ուղղանկյունաձև անցջերով։ Որոշ պայմանների դեպքում այս խնդիրը բերվում է նախորդ դեպքին։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

1 Д. И. Шерман, ДАН СССР, т. 28, № 1 (1940). ² С. С. Заргарян, V всесоюзный съезд, по теоретической и прикладной механике, Аннотации докладов, Наука, Алма-Ата, 1981. ³ В. А. Арсенян, С. С. Заргарян, В. Р. Мартиросян, Изв. АН СССР, МТТ, № 1, 1982. ⁴ В. М. Буйвол, Прикл. механика, т. 5, № 3 (1959). ⁵ С. Ф. Ступак, в кн.: Механика твердого деформируемого тела и родственные проблемы анализа, МИХМ, М., 1978. ⁶ В. А. Арсенян, Мужвузовский сб. «Механика», изд. Ереванск. гос. ун-та, т. 1, 1981. ⁷ Д. И. Шерман, Изв. АН СССР, ПММ, т. 15, вып. 3, 1951.