LXXIII

1981

2

УДК 51.01.518.5

MATEMATHKA

О. С. Асатрян

Две теоремы о вТ сводимости

(Представлено чл.-корр АН Армянской ССР Р. Р. Варшамовым 27/11 1981)

В данной статье изучается тьюринговая сводимость (T) в классе всех рекурсивно-перечислимых (р. п.) множеств. Вводятся понятия ограниченно-тьюринговой (bT) сводимости и bT-креативности и доказывается, что в этом классе T- и bT-сводимости, а также T- и bT-креативности совпадают. Все хорошо известные понятия, используемые в изложении, можно найти в (1).

Определение. Если α и β р. п. множества, то α bT сводится

к в, если существует о. р. ф. н такая, что

1)
$$\forall x[x \in \overline{a} \Leftrightarrow \forall y[y \in W_{h(x)} \Rightarrow Dy \cap \beta \neq \emptyset]] \tag{1}$$

И

$$\forall x [|W_{h(x)}| < \infty],$$

где |a|-мощность множества a.

Теорема 1. Если α и β p. n. множества, то $\alpha \leq \beta \Rightarrow \alpha \leq \delta \beta$

Доказательство. В одну сторону очевидно. Предположим, что α , β р. п. множества $\alpha \leq \gamma \beta$, и покажем, что $\alpha \leq b\tau \beta$. Известно (1), что, если $\alpha \leq \gamma \beta$, то α и β находятся в соотношении (1) с функцией f вместо h.

Пусть $W_{f(x)}^n$, α^n и β^n конечные подмножества $W_{f(x)}$ α и β соответственно, перечисление за n шагов некоторых перечислений и такие, что $W_{f(x)} = \bigcup_n W_{f(x)}^n$, $\alpha = \bigcup_n \alpha^n$ и $\beta = \bigcup_n \beta^n$. Для каждого $x \in N$ по шагам n будем строить последовательность конечных множеств $\gamma_x^0 \subseteq \prod_n \sum_n \cdots \subseteq \gamma_x^n \subseteq \dots$ такую, что $\forall x \forall n | \gamma \subseteq W_{f(x)}|$ и о. р. ф. h, определенная как $W_{h(x)} = \bigcup_n \gamma_x^n$, обладает тем свойством, что $\forall_x [|W_{h(x)}| < \infty]$ и $\alpha \leqslant \beta$. Это и будет означать, что $\alpha \leqslant_b r \beta$.

Шаг О. Для всех x и $n \le x$ положим $\gamma^n = \emptyset$.

Шаг n+1. Предположим, что γ^n , W_n , α^n , β^n определены для всех x, $x \le n+1$. Выпишем следующие условия:

- 1) $x \in \alpha^{n+1}$;
- 2) $\exists u[u \in \gamma_x^n \& D_u \cap \beta^{n+1} = \emptyset]$

и для каждого $x \le n+1$, проверяя выполнимость условий 1.2, будем строить γ_{-}^{n+1} описанной ниже инструкцией.

Инструкция. Пусть x фиксированное число и $x \le n+1$. Проверяем, выполняется ли 1) для x. Если да, то определим $\gamma_x^{n+1} = \gamma_x^n$ и переходим к шагу n+2, в противоположном случае проверяем выполнимость условия 2).

Если 2) выполняется для x, то определим $\gamma_x^{n+1} = \gamma_x^n$ и перейдем к шагу n+2. В противном случае пусть u_0 наименьшее число из положим $\gamma_x^{n+1} = \gamma_x^n \bigcup \{u_0\}$ и перейдем к шагу n+2.

Описание инструкции закончено.

Определим $\gamma_x = \bigcup \gamma_x^n$. Так как в γ_x^n добавляются числа только из то для всех $x \in N$ $\gamma_x \subseteq W_{f(x)}$. Очевидно также, что постовский номер γ_x находится некоторой о. р. ф. h(x), т. е. $\forall x [W_{h(x)} = \gamma_x]$.

Покажем, что $\forall x ||W_{h(x)}| < \infty$ $|\&a \leq h \beta$, т. е. $a \leq h \beta$.

Пусть $x \in \alpha$ и n_0 наименьший шаг такой, что $x \in \alpha^{n_0}$. Тогда в силу условия 1) инструкции $\forall n[n_0 < n \Rightarrow \gamma_x^n = \gamma_x^{n_0}]$. Поэтому $|W_{h(x)}| < \infty$. С другой стороны

$$x \in \alpha \Longrightarrow \forall u \mid u \in W_{h(x)} \Longrightarrow D_u \cap \beta \neq \emptyset$$
].

Так как $W_{h(x)} \subset W_{f(x)}$, то верно и

$$x \in \alpha \Rightarrow \forall u [u \in W_{h(x)} \Rightarrow D_u \cap \beta \neq \emptyset].$$

Пусть теперь $x \in \alpha$; тогда из того, что $\alpha \leqslant \beta$, имеем

$$x \in \alpha \Rightarrow \exists u [u \in W_{f(x)} \& D_u \cap \beta = \emptyset].$$

Поэтому существует единственный шаг n_0 такой, что $W_{n_0} = \min\{W_{n_0}^{n_0} \mid \gamma^{n_0-1}\}$ выполнены следующие два условия:

- a) $D_{u_0} \cap \beta = \emptyset$;
- 6) $\forall u[u \in \gamma_x^{n_0-1} \Rightarrow D_u \cap (N \setminus \beta^{n_0-1}) \neq \emptyset].$

В существовании такого шага легко убедиться. Тогда на конце шага n_0 $\gamma_{x}^{n_0} = \gamma_{x}^{n_0-1} \bigcup \{u_0\}$ и верно следующее утверждение:

$$\forall n [n_0 \leq n \Rightarrow \gamma_x^n = \gamma_x^{n_0} \& u_0 \in \gamma_x^n \& D_{u_0} \cap \beta^n = \varnothing].$$

Поэтому

$$x \in \overline{a} \to \exists u | u \in W_{h(x)} \& D_u \cap \beta = \emptyset | \& | W_{h(x)} | < \infty.$$

Теорема доказана.

Замечание. Из построения множеств γ^n видно, что $x \in \alpha \Rightarrow cy$ ществует единственное число u_0 такое, что $u_0 \in W_{h(x)} \& D_u \cap \beta = \emptyset$.

Теорема 2. Р. п. множество в Т-креативно тогда и только тогда, когда в bT-креативно.

Доказательство. В одну сторону очевидно. Покажем, что если β T-креативно, то β bT-креативно. По определению р. п. β T-креативно, если существует о. р. ф. g такая, что

$$\forall u [u \in W_{g(x)} \Rightarrow D_u \not \subset \overline{\beta}] \Leftrightarrow \exists u] u \in W_{g(x)} \& D_u \subset W_x]. \tag{3}$$

Легко убедиться, что для любого $x \in N$ верно одно и только одно и з следующих двух утверждений:

$$\exists u[u \in W_{g(x)} \& D_u \subset W_x]; \tag{a}$$

$$\exists u[u \in W_{g(x)} \& D_u \cap \beta = \emptyset]. \tag{b}$$

Заметим также, что

$$\forall x [W_{g(x)} \neq \varnothing]. \tag{4}$$

так как в противном случае (3) превращается в противоречивое утверждение.

Доказательство теоремы будет проводиться по шагам. Пусть β^n , W_x^n и $W_{g(x)}^n$ конечные подмножества, перечисленные к шагу n в соответствующих множествах β , W_x и $W_{g(x)}$. На каждом шаге n для всех x, $(x \le n)$ будут построены конечные множества γ^n такие, что для всех x, $n \in \mathbb{N}$ $\gamma_n \subseteq \gamma_x^{n+1}$ и функция h(x), определенная как $W_{h(x)} = \bigcup_{n \in \mathbb{N}} \gamma^n$ будет функцией b T-креативности β . А именно h(x) удовлеторит (3) вместо g и $\forall x [|W_{h(x)}| < \infty]$.

Для всех n ∈ N обозначим следующие семейства предикатов:

$$\exists u[u \in \gamma_{x}^{n} \& D_{u} \subset W_{x}^{n+1}] \qquad (a_{n});$$

$$\exists u[u \in \gamma_{x}^{n} \& D_{u} \subset N \setminus \beta^{n+1}] \qquad (b_{n}).$$

Шаг О. Для всех $x \in \mathbb{N}$ поместим в γ_x^2 первый элемент, вычисленный в $W_{x(x)}$. По замечанию (4) $\forall x [\gamma_x^2 \neq \varnothing]$.

Шаг n+1. Пусть γ_x^n , β^{n+1} , W_x^{n+1} и $W_{x(x)}^{n+1}$ определены к шагу n+1. Для каждого $x \le n+1$ определим γ_x^{n+1} , выполняя предписания следующей инструкции.

Проверяем, истинен ли предикат (a_n) . Если да, то $\gamma_x^{n+1} = \gamma_x^n$, переходим к шагу n+2, в противном случае проверяем, истинен ли предикат (b_n) . Если да, то $\gamma_x^{n+1} = \gamma_x$, переходим к шагу n+2, в противном случае находим наименьшее число u_0 из u_0 если такое существует, определяем u_0 0 (если не найдется u_0 0, то u_0 1) и переходим к шагу u_0 1. Описание инструкции окончено.

Определим о. р. ф. h(x) как

Пусть A и B обозначают левую и, соответственно, правую части эквивалентности (3). Сначала мы докажем, что А&В истинна с функцией h вместо g и $|W_{h(x)}| < \infty$ для x, удовлетворяющих (a). А затем для x, удовлетворяющих (b), покажем, что $\sim A \& \sim B$ истинниа с функцией h вместо g и $|W_{h(x)}| < \infty$. Тем самым в силу замечания об (a) и (b) будет установлена эквивалентность (3) для функции h такой, что $\forall x[|W_{h(x)}|<\infty]$. Заметим, что $\forall x \forall n[\gamma_x^n \subset W_{g(x)}]$. Это очевид-HO.

Пусть х удовлетворяет (а). Тогда множество

$$I = |u/u \in W_{g(x)} \& D_u \subset W_x| \neq \emptyset$$
.

Покажем, что хотя бы одно число $u_0 \in I$ будет помещено в I на некотором шаге п.

Предположим противное, т. е.

$$\forall n \forall u [u \in I \Rightarrow u \in \gamma_x^n].$$

Так как $\forall n [\gamma^n \neq \emptyset]$, то из того, что

$$\forall n A u [u \in \gamma_x^n \Rightarrow D_u \not\subset W_x],$$

следует

$$\forall n \forall u [u \in \gamma_x^n \Rightarrow D_u \perp W_x^{n+1}].$$

Тогда для всех n (a_n) не выполняется для x и предписания инструкции обязывают переходить к проверке условия (b_n) на каждом шаге n. Так как x удовлетворяет (a), то из (3) имеем

$$\forall u[u \in W_{g(x)} \Rightarrow D_u \cap \beta \neq \emptyset].$$

Поэтому

$$\forall n \forall u [[u \in \gamma_x^n \& D_u \subset N \setminus \beta^{n+1}] \Rightarrow \exists n'[n' > n \& D_u \not\subset N \setminus \beta^{n'+1}],$$

т. е. на бесконечном числе шагов n'+1 x не удовлетворяет также условиям (b_n) . Поэтому согласно инструкции мы вынуждены добавлять новые числа u' из $W_{g(x)}^{n'+1}$ в $\gamma_{x}^{n'+1}$, не затрагивая чисел из I. Но этого не может быть в силу выбора чисел $u' = \min\{W_{n+1}^{n+1}, \dots\}$. Получили противоречие. Поэтому хотя бы одно число из / будет помещено в үх.

Пусть $n_0 \in I$ первое число, помещенное в γ_n , где n_0 номер нанменьшего такого шага. Очевидно из инструкции, что

$$\forall n[n_0 \leqslant n \Longrightarrow \gamma_x^n = \gamma_x^n \circ \& u_0 \in \gamma_x^n \& D_u \subset W_x^n].$$

Поэтому

$$|W_{h(x)}| < \infty \& \exists u [u \in W_{h(x)} \& D_u \subset W_x],$$

и ясно, что в $W_{h(x)}$ попадает только одно число u_0 из I. Покажем теперь, что

$\forall u [u \in W_{h(x)} \rightarrow D_u \cap \beta \neq \emptyset].$

Предположим противное, т. е. $\exists u[u \in W_{h(x)} \& D_u \cap \beta = \varnothing]$. Так как $W_{h(x)} \subset W_{g(x)}$, то $\exists u[u \in W_{g(x)} \& D_u \cap \beta = \varnothing]$, тогда из (3) имеем: $\forall u[u \in W_{g(x)} \otimes D_u \subset W_x]$. Но это противоречит выбору x в этой части доказательства. Таким образом, нами доказано:

Если x удовлетворяет (a), то $|W_{h(x)}| < \infty$ и A&B истинна для h. Пусть x удовлетворяет (b). Тогда для всех n условия (a_n) не выполняются, так как в противном случае x удовлетворяет (a), чего не может быть в силу замечания об (a) и (b). Поэтому на каждом шаге n мы переходим к проверке условия (b_n) .

Пусть $C = \{u/u \in W_{g(x)} \& D_u \cap \beta = \emptyset\}$. Ясно, что C непустое множество. Поэтому существует число n_0 такое, что для некоторого $u_0 \in C$ выполнены следующие условия:

$$u_0 = \min \left\{ W_{g(x)}^{n_0+1} \setminus \gamma_x^{n_0} \right\} \& \forall u \left[u \in \gamma_x^n \circ D_u \not\equiv N \setminus \beta^{n_0+1} \right].$$

Тогда на шаге n_0+1 и (b_{n_0}) не выполняется. Поэтому в конце этого шага u_0 будет помещен в $\gamma_x^{n_0+1}$ и очевидно, что

$$\forall n [n_0 + 1 \leq n \Rightarrow \gamma_x^n = \gamma_x^{n_0 + 1} \& u_0 \in \gamma_x^n \& D_{u_0} \subset \mathbb{N} \setminus \beta^{n+1}].$$

Это означает, что $|W_{h(x)}| < \infty$ и $\exists u[u \in W_{h(x)} \& D_u \subset \beta]$. Покажем теперь, что $\forall u[u \in W_{h(x)} \Rightarrow D_u \subset W_x]$. Опять предположим противное, т. е. $\exists u[u \in W_{h(x)} \& D_u \subset W_x]$. Так как $W_{h(x)} \subset W_{g(x)}$, то $\exists u[u \in W_{g(x)} \& D_u \subset W_x]$. Учитывая (3), получаем $\forall u[u \in W_{g(x)} \Rightarrow D_u \subset \beta]$, а это противоречит выбору числа x, удовлетворяющему (b). Наконец мы получили $|W_{h(x)}| < \infty$ и истинность $\sim A \& \sim B$ для h.

Теорема доказана.

Замечание. h(x) обладает тем свойством, что для удовлетворения (a) или (b) в $W_{h(x)}$ существует единственное число u_0 .

Вычислительный центр Академии наук Армянской ССР

2. U. UUUSPBUL

ներու թեուեղ սանվանափակ թյոււինգյան բեբելիության վասին

Ալգորիթմիկ բերելիություններից ամենաբնականը և ամենաընդհանուրը
թյուրինգյան բերելիությունն էւ Այս Հոդվածում մտցվում է բնականորեն
սահմանվող սահմանափակ-թյուրինգյան բերելիության գաղափարը ռեկուրսիվ թվարկելի բազմությունների դասի համար։

Առաջին թեորեմը ապացուցում է, որ նշված դասում թյուրինգյան և սահմանափակ թյուրինգյան բերելիությունները համընկնում են։

լացի դևարին ղանվագ ը աւսուղրասիևվագ է րար եանղարկար որ չ-

մանափակ-թյուրինգյան կրհատիվության գաղափարը։ Երկրորդ թեորեմը ապացուցում է, որ այս գաղափարը նույնպես համընկնում է թյուրինգյան կրհատիվության գաղափարի հետ վերոհիչյալ դասում։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՑՈՒՆ

1 X. Роджерс, Теория рекурсивных функций и эффективная вычислимость. Мир. М., 1972.