LXXIII 1981

УКД 621.313.+621.319.33.01

ЭЛЕКТРОМЕХАНИКА

Академик АН Армянской ССР А. Г. Иосифьян, Г. Л. Арешян

Основы теории синхронных емкостных машин переменного тока

(Представлено 14/VII 1981)

Электрические машины в зависимости от принципа осуществления (реализации) взаимного преобразования механической и электромагнитной энергий подразделяются на два больших типа:

- а) индуктивные (магнито-индукционные) электрические машины;
- б) емкостные (электро-индукционные) электрические машины.

В электрических машинах индуктивного типа в соответствии с их принципиальными конструктивными особенностями преобразование электромеханической энергии осуществляется в основном за счет изменяющегося магнитного потока взаимоиндукции, а влиянием электрических потоков взаимоиндукции на процессы преобразования в машинах этого типа можно пренебречь. В основу построения теории электрических машин индуктивного типа положена матрица индуктивностей электрических цепей машины, состоящих из обмоток. В электрических машинах емкостного типа (электрические цепи образованы электродами) преобразование электромеханической энергии осуществляется в основном за счет изменяющегося электрического потока взаимонндукции, а влиянием магнитных потоков взаимонндукции на процессы энергообмена в этих машинах можно пренебречь. В основу построения теории емкостных электрических машин должна быть положена матрица емкостей электрических цепей таких машин. Указанные два принципа энергообмена в электрических контурах были исследованы в работе (1), из которой следует, что возможна реализация и третьего типа электрических машин, которые можно будет отнести к индуктивно-емкостным электрическим машинам, в которых при энергообменных процессах существенную роль будут играть оба потокосцепления—как магнитное, так и электрическое. Теория таких машин должна базироваться на использовании одновременно матрицы индуктивностей и матрицы емкостей. В настоящее время вся мировая электромашинная энергетика (генерация электрической энергии и ее преобразование в механическую) практически базируется только на электрических машинах индуктивного типа. для которых имеется разработанная и проверенная на практике общепризнанная теория, охватывающая машины переменного и постоянного тока. Хотя конструктивная реализация электрических машин емкостного типа была осуществлена почти одновременно с машинами индуктивного типа. однако ввиду целого ряда специфических особенностей эти машины не получили широкого распространения и применения, чем очевидно можно объяснить отсутствие до сих пор основ общей теории емкостных машин переменного тока (2-6). Что касается машин индуктивноемкостного типа, то здесь предстоит разработка как их конструктивных реализаций, так и соответствующей теории. Авторы разработали основы теории емкостных машин переменного тока с использованием общей методологии, принятой при исследовании индуктивных машин переменного тока, основные положения которой даются ниже.

Основные уравнения емкостных машин переменного тока (синхронных и асинхронных) в матричной записи для натуральных переменных имеют вид:

$$Q = CU, I = -\frac{dQ}{dt} I_n = GU, I = I_n + I_r,$$
 (1)

где соответствующие матрицы представляют: $Q(n\times 1)$ —электрические заряды (электрические потокосцепления), $C(n\times n)$ —собственные и взаимные емкости, $U(n\times 1)$ —напряжения на электродах и зажимах машины, $I(n\times 1)$ — токи электродов, $I_n(n\times 1)$ —межэлектродные токи проводимости, $G(n\times n)$ —межэлектродные проводимости, $I_r(n\times 1)$ —токи генерации, они же токи, поступающие во внешнюю цепь при генераторном режиме машины. В двигательном режиме токи, поступающие из внешней сети в машину $I_c=-I_r$.

На основе (1) получаем дифференциальные уравнения

$$\frac{dQ}{dt} + GU = -I_r, \qquad \frac{dQ}{dt} = -AQ - I_r$$

$$\frac{dU}{dt} = -BU - C^{-1}I_r, \qquad \frac{dI}{dt} = -DI + A\frac{d}{dt}(A^{-1}I_r)$$
(2)

где матрицы A, B, C однородных дифференциальных уравнений выражаются через матрицы емкостей и проводимостей и равны

$$A = GC^{-1}, \quad B = C^{-1} \left(\frac{dC}{dt} + G \right), \quad D = A + A \frac{dA^{-1}}{dt}.$$
 (3)

При этом предполагается, что матрица емкостей С является неособенной матрицей во всем диапазоне изменения угла ү. Угол ү определяет положение ротора относительно статора, выражается в электрических градусах и связан со скоростью вращения ротора

$$\gamma = \int_{0}^{t} \omega dt + \gamma_{0}.$$

$$M_{\text{PM}} = -\frac{p}{2}U^{2}\frac{\partial C(\gamma)}{\partial \gamma}U,$$
 (4)

где U^* —транспонированная матрица напряжений, p—число пар полюсов.

Уравнение движения ротора

$$\frac{1}{p} \frac{d^2 \gamma}{dt^2} + \frac{k}{p} \frac{d \gamma}{dt} + M_{\text{BM}} = M_{\text{BH}}, \tag{5}$$

где /- момент инерции, Мвн-внешний момент.

Система дифференциальных уравнений (2) совместно с дифференциальным уравнением движения инерциальных масс (5) описывают в общем случае стационарные и нестационарные режимы емкостной машины переменного тока.

Поскольку уравнения (2) емкостной машины, записанные для натуральных переменных, являются дифференциальными уравнениями с переменными коэффициентами и их решение затруднительно, то возникает необходимость исследовать вопрос возможности перехода в пространство новых переменных, для которых система дифференциальных уравнений записывается с постоянными коэффициентами.

Доказана следующая

Теорема преобразования. *Если емкостная электричес*кая машина переменного тока такова, что:

- а) ее матрица емкостей $C(\gamma)$ (γ —угол положения ротора относительно статора) обладает следующими свойствами:
- 1°) является непрерывной периодической матрицей в интервале $0 \le \gamma \le \infty$;
- 2°) имеет непрерывную периодическую производную $\frac{dC(\gamma)}{d\gamma}$ в интервале $0 < \gamma < \infty$;
- 3) определитель $\det C(\gamma)$ ограничен по модулю снизу положительной постоянной, т. е. матрица $C(\gamma)$ является неособенной для $\gamma \geqslant 0$;
- б) ее матрица проводимостей G либо обладает теми же свойствами, что и матрица C(7), либо в частном случае
- 4°) является неособенной постоянной матрицей, то эти условия являются необходимыми и достаточными для существования преобразования в новые системы координат с новыми электрическими зарядами, напряжениями и токами, в которых система дифференциальных уравнений электрических цепей такой машины при постоянной скорости вращения ротора записывается с постоянными коэффициентами.

Доказательство теоремы проводится аналогично доказательству соответствующей теоремы для машин переменного тока индуктивного типа (7).

Такое пространство новых переменных, как и для индуктивных

электрических машин, будем называть пространством Горева—Парка. Переход к новым переменным осуществляем с помощью матриц преобразования Ляпунова Λ_a и Λ_b размерностью $(n \times n)$

$$Q = \Pi_a Q_*, \quad U = \Pi_b U_*, \quad I = \Pi_a I_*$$

$$I_r = \Pi_a I_{r_*}, \quad I_n = \Pi_a I_{n_*}$$
(6)

где Q_* , U_* , I_* , I_{r*} , I_{n*} —матрицы-столбцы новых переменных в пространстве Горева—Парка.

Все известные авторам реализованные емкостные машины переменного тока—многофазные и однофазные удовлетворяют условиям теоремы преобразования. Производя необходимые преобразования, получаем для емкостных машин, которые удовлетворяют теореме, следующие выражения для матриц в новом пространстве:

$$C_{*} = J_{a}^{-1} C J_{b} \qquad G_{*0} = J_{a}^{-1} G J_{b}$$

$$\Omega = J_{a}^{-1} \frac{dJ_{a}}{dt} \qquad G_{*} = \Omega G_{*} + G_{*0}$$
(7)

где постоянные матрицы соответственно названы C_* —матрица емкостей, G_* —матрица проводимостей, G_{*0} —частичная матрица проводимостей, Ω — матрица вращения.

Уравнения (1) соответственно преобразуются в

$$Q_{*} = C_{*}U_{*}, \quad I_{*} = -\frac{dQ_{*}}{dt} - \Omega Q_{*}, \quad I_{*} = I_{n_{*}} + I_{r_{*}}. \tag{8}$$

В пространстве Горева—Парка ток электродов I получает дополнительную составляющую, обусловленную матрицей вращения Ω . Эту составляющую назовем матрицей токов вращения

$$I_{*\omega} = \Omega Q_* = \Omega C_* U_*. \tag{9}$$

С учетом (9) выражение токов электродов примет вид:

$$I_{*} = -\frac{dQ_{*}}{dt} - I_{*} \tag{10}$$

Основные дифференциальные уравнения емкостной машины в пространстве Горева—Парка для электрического потокосцепления и напряжения имеют вид:

$$\frac{dQ_*}{dt} + G_*U_* = -I_{r*}, \quad C_* \frac{dU_*}{dt} + G_*U_* = -I_{r*}$$

$$\frac{dQ_*}{dt} + (G_*C_*^{-1})Q_* = -I_{r*}$$
(11)

Применим полученные уравнения для случая трехфазной симметричной синхронной емкостной машины, статор которой состоит из фазных электродов, занимающих в электрических градусах угол $\alpha_s = \pi/3$ радиан, а ротор содержит электроды возбуждения с углами $\alpha_f = \pi$ (полно-электродная машина).

Матрицы емкостей и проводимостей такой машины будут

$$C(\gamma) = \begin{vmatrix} C_{aa} & C_{ab} & C_{ac} & C_{af} \\ C_{ba} & C_{bb} & C_{bc} & C_{bf} \\ C_{ca} & C_{cb} & C_{cc} & C_{cf} \\ C_{fa} & C_{fb} & C_{fc} & C_{ff} \end{vmatrix}; \qquad G = \begin{vmatrix} g & 0 & 0 & 0 \\ 0 & g & 0 & 0 \\ 0 & 0 & g & 0 \\ 0 & 0 & 0 & g_f \end{vmatrix}. \tag{12}$$

Элементы матрицы емкостей равны:

$$C_{aa} = C_{bb} = C_{cc} = C_a = \text{const}, \quad C_{ab} = C_{ac} = C_{ba} = C_{bc} = C_{ca} = C_{cb} = n = \text{const},$$

$$C_{af} = C_{fa} = -C_1 \cos \gamma, \quad C_{bf} = C_{fb} = -C_1 \cos (\gamma - p), \quad C_{cf} = C_{fc} = -C_1 \cos (\gamma + p),$$

$$C_{ff} = \text{const}, \quad \rho = 2\pi/3.$$

Матрицы натуральных переменных

$$Q = (q_a \, q_b \, q_c \, q_f), \quad I = (i_a \, i_b \, i_c \, i_f), \quad U = (u_a \, u_b \, u_c \, u_f)$$

$$I_n = (i_{na} \, i_{nb} \, i_{nc} \, i_{nf}), \quad I_r = (i_{ra} \, i_{rb} \, i_{rc} \, i_{rf})$$
(13)

Индексами a, b, c, f обозначены величины трех фаз и цепи возбуждения.

Матрицы уравнения (12) удовлетворяют условиям теоремы преобразования.

Переход в пространство Горева—Парка для такой машины осуществляется матрицами Ляпунова вида:

Переменные в новом пространстве снабжаем индексами 0, d, q, r.

$$Q_* = (q_0 q_d q_q q_r), \quad U_* = (u_0 u_d u_q u_r), \quad I_* = (i_0 i_d i_q i_r),$$

$$I_{r*} = (i_{r0} i_{rd} i_{rq} i_{rr}), \quad I_{n*} = (i_{n0} i_{nd} i_{nq} i_{nr}). \tag{15}$$

Переход от этих переменных к натуральным переменным задается уравнениями (6). Обратный переход осуществляют уравнения (16)

$$Q_* = \Pi_a^{-1}Q$$
, $U_* = \Pi_b^{-1}U$, $I_* = \Pi_a^{-1}I$, $I_{r*} = \Pi_a^{-1}I_r$, $I_{n*} = \Pi_a^{-1}I_n$. (16)

Обратные матрицы Ляпунова имеют вид:

$$\Pi_{a}^{-1} = \begin{bmatrix}
1/3 & 1/3 & 1/3 & 0 \\
2/3\cos\gamma & 2/3\cos(\gamma - \rho) & 2/3\cos(\gamma + \rho) & 0 \\
2/3\sin\gamma & 2/3\sin(\gamma - \rho) & 2/3\sin(\gamma + \rho) & 0 \\
0 & 0 & 1
\end{bmatrix}$$
(17)

Матрица Π_b^{-1} отличается от матрицы Π_a^{-1} элементом в правом нижнем углу (i=j=4), который равен 2/3. Производя вычисления в соответствии с уравнениями (7), получаем матрицы в пространстве Горева—Парка

$$C_{*} = \begin{vmatrix} C_{0} & 0 & 0 & 0 & 0 \\ 0 & C_{sc} & 0 & -N \\ 0 & 0 & C_{sc} & 0 \\ 0 & -N & 0 & C_{r} \end{vmatrix} \qquad C_{*0} = \begin{vmatrix} g & 0 & 0 & 0 & 0 \\ 0 & g & 0 & 0 & 0 \\ 0 & 0 & g & 0 & 0 \\ 0 & 0 & 0 & g_{r} \end{vmatrix}$$
(18)

$$\Omega = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & \omega & 0 \\
0 & -\omega & 0 & 0
\end{bmatrix}, \quad G_* = \begin{bmatrix}
g & 0 & 0 & 0 \\
0 & g & \omega C_{sc} & 0 \\
0 & -\omega C_{sc} & g & \omega N \\
0 & 0 & 0 & g_r
\end{bmatrix} \tag{19}$$

где элементы новых матриц равны:

$$C_0 = C_a + 2n$$
, $C_{sc} = C_a - n$, $N = 3/2 C_1$, $C_r = 3/2 C_{ff}$, $g_r = 3/2 g_f$.

При постоянной скорости вращения (w=d/dt=const) матрицы Ω и G_* совместно с матрицами C_* и G_{*0} являются постоянными матрицами и, следовательно, дифференциальные уравнения емкостной машины в новом пространстве имеют постоянные коэффициенты.

Уравнение $Q_* = C_* U_*$ для составляющих примет вид:

$$q_0 = C_0 U_0, \quad q_d = C_{sc} U_d - N U_r$$

$$q_q = C_{sc} U_q, \quad q_r = -N U_d + C_r U_r$$
(20)

Уравнение $-C_* \frac{dU_*}{dt} = G_*U_* + I_*$ (см. второе уравнение системы (11)) в развернутом виде будет:

$$-C_{0}\frac{dU_{0}}{dt} = gU_{0} + i_{r_{0}}$$

$$-C_{sc}\frac{dU_{d}}{dt} + N\frac{dU_{r}}{dt} = gU_{d} + \omega C_{sc}U_{q} + i_{r_{d}}$$

$$-C_{sc}\frac{dU_{q}}{dt} = -\omega C_{sc}U_{d} + gU_{q} + \omega NU_{r} + i_{r_{q}}$$

$$N\frac{dU_{d}}{dt} - C_{r}\frac{dU_{r}}{dt} = g_{r}U_{r} + i_{r_{r}}$$
(21)

Последнее уравнение системы (11) в явном виде будет:

$$-\frac{dq_{0}}{dt} = (e_{0}g)q_{0} + i_{r_{0}}$$

$$-\frac{dq_{d}}{dt} = (e_{11}g)q_{d} + \omega q_{q} + (e_{12}g)q_{r} + i_{r_{d}}$$

$$-\frac{dq_{q}}{dt} = (\omega\beta_{1})q_{d} + (e_{1}g)q_{q} + (\omega\beta_{2})q_{r} + i_{r_{q}}$$

$$-\frac{dq_{r}}{dt} = (e_{21}g_{r})q_{d} + (e_{22}g_{r})q_{r} + i_{r_{f}}$$
(22)

где обозначены

$$e_{0} = C_{0}^{-1}, \quad e_{q} = C_{sc}^{-1}, \quad e_{11} = (\sigma C_{r})^{-1}, \quad e_{22} = (\sigma C_{sc})^{-1}$$

$$e_{12} = e_{21} = \sqrt{\frac{1 - \sigma}{C_{sc}C_{r}}}, \quad \sigma = 1 - \frac{N^{2}}{C_{sc}C_{r}}, \quad \beta_{1} = \frac{N^{2} - C_{sc}^{2}}{\sigma C_{sc}C_{r}}; \quad \beta_{2} = \frac{N(C_{r} - C_{sc})}{\sigma C_{sc}C_{r}}$$

$$(23)$$

Не выписывая в явном виде остальные уравнения, которые не трудно получить, имея (18) и (19), приведем выражение для электромагнитного момента в переменных нового пространства.

Преобразовывая уравнение (4), получаем:

$$M_{\text{BM}} = -\frac{3}{2} p N U_q U_r = -\frac{3}{2} p(q_q U_d - q_d U_q). \tag{24}$$

В (24) используются амплитудные значения переменных напряжений и зарядов.

В заключение рассмотрим симметричный стационарный режим трехфазной синхронной машины.

Для стационарных режимов все производные новых переменных по времени равны нулю. Для симметричных режимов переменные нулевой последовательности равны нулю. С учетом этих обстоятельств вместо уравнений (21) получаем, вводя комплексные векторы в плоскости d и q, аналогично векторным диаграммам синхронных индуктивных машин

$$U = U_q + iU_d$$
, $I_r = i_{rq} + ji_{rd}$ $j = \sqrt{-1}$ (25)

$$g\bar{U} + j\omega C_{sc}\bar{U} + \omega NU_r + \bar{I}_r = 0. \tag{26}$$

Вводя вектор эдс холостого хода

$$\vec{E}_0 = jE_0 = j\frac{N}{C_{sc}}U_r, \tag{27}$$

получаем векторное уравнение емкостной синхронной машины

$$U = E_0 + jx_c I_r + j\varepsilon U, \tag{28}$$

где $x_c = (\omega C_{sc})^{-1}$, $\varepsilon = g(\omega C_{sc})^{-1}$.

Последнее уравнение позволяет легко построить векторные диаграммы синхронной емкостной машины. Из этих диаграмм следует, что при активно-емкостной нагрузке автономно работающего синхронного емкостного генератора напряжение на зажимах U по модулю меньше, чем эдс холостого хода E_0 . Реакция якоря в этом случае носит «раззаряживающий» характер.

Ереванский политехнический институт

Հայկական ԱՍՀ ԳԱ ակադեմիկոս Ա. Ղ. ԻՈՍԻՖՅԱՆ, Գ. Լ. ԱՐԵՇՑԱՆ

Փոփոխական հոսանքի ունակային սինխուն մեքենաների տեսության հիմունքները

Տրված են փոփոխական հոսանքի ունակային մեքենաների հանրահաշվական և դիֆերենցիալ հավասարումները մատրիցային տեսքով։ Բերված է մեքենայի էլեկտրամագնիսական մոմենտի արտահայտությունը։ Ապացուցված է ձևափոխման թեորեմը ցույց է տալիս այն անհրաժեշտ և բավարար պայմանները, որոնց պետք է բավարարեն էլեկտրական մեքենայի ունակության և հաղորդականության մատրիցաները, որպեսզի ունակային մեքենայի փոփոխական գործակիցներով դիֆերենցիալ հավասարումները ձեկափոխվեն հաստատուն գործակիցներ ունեցող դիֆերենցիալ հավասարումները ձեկարի, որտեղ օգտագործվում են նոր փոփոխականներ։ Նշված ձևափոխությունը կատարվում է Լյապունովի մատրիցաների միջոցով։ Աշխատանքի այդ մասի տեսությունը վերաբերվում է սինխրոն և ասինխրոն ունակային էլեկտրական մեքենաներին։ Ունակային սինխրոն մեքենայի համար տրված են համապատասխան հավասարումները։

ЛИТЕРАТУРА— РГЦЧЦЪПРРЗПРЪ

¹ А. Г. Иосифьян, ДАН АрмССР, т. 67, № 4 (1978). ² Л. С. Полотовский, Емкостные машины постоянного тока высокого напряжения, ГЭИ, 1960. ¹¹ Электростатические ускорители заряженных частиц. Под ред Вальтера А. К., М., 1963. ⁴ Ф. Тэнэсеску, Р. Крамарюк, Электростатика в технике, М., Энергия, 1980. ⁵ И. П. Копылов, Применение вычислительных машин в инженерно-экономических расчетах, М., Высшая школа, 1980. ⁶ А. А. Бальчитис, Емкостная подобласть индукционных процессов преобразования потоков энергии, Минтис, Вильнюс, 1973. ⁷ Г. Л. Арешян, ДАН АрмССР, т. 56, № 4 (1973).