LXXII

1981

2

УДК 621.372 45

РАДИОФИЗИКА

К. А. Барсуков, Г. А. Григорян

Объемный резонатор с периодически движущейся границей

(Представлено академиком АН Армянской ССР Э Г. Мирзабекяном 25/VI 1980)

Одномерный резонатор с периодически движущейся границей был рассмотрен в (¹), однако используемый там метод не позволяет исследовать случай резонанса, когда энергия колебаний стенки эффективно передается полю. Для трехмерного резонатора условие резонанса оказывается иным, и в рамках метода (¹) уже возможно исследование резонансного взаимодействия поля и стенки.

Пусть резонатор представляет собой, как и в (2), отрезок волновода, один из торцов которого поконтся, а другой совершает колебания по закону

$$x = \overline{a}(\tau) = a + b \cos \frac{\Omega \tau}{c}, \tag{1}$$

где $\tau=ct$, a-характерное расстояние между торцами, b-амплитуда колебаний правого торца, $\Omega-$ частота колебаний движущегося торца. Условие резонанса можно получить из следующих простых соображений. Очевидно, что элементарная работа, совершаемая частью стенки ds за время dt, есть

$$dA = \frac{1}{4\pi c} H = b\Omega \sin \Omega t \, dt \, ds,$$

где H--касательная к $x = a(\tau)$ и s--составляющая магнитного поля. Отсюда полная работа стенки за время Δt будет

$$A = \frac{b^2}{4\pi c} \int_{c}^{c} \int_{s}^{c} H^2\left(\left(a + b\cos\frac{2\pi}{c}\right), +\right) \sin 2t \, dt \, ds. \tag{2}$$

Введем упрощающие предположения. Во-первых, будем считать колебания малыми, во-вторых, скорость колебаний нерелятивистской. Это означает, что

$$\frac{b}{a} \ll 1, \quad \frac{2b}{c} \ll 1.$$
 (3)

С точностью до величин первого порядка малости уравнение (2) за-

$$A = \frac{b\Omega}{4\pi c} \int \int H^{2}(a, \tau) \sin \Omega t \, dt \, ds. \tag{4}$$

Пусть собственная частота резонатора есть ω_{nm} , тогда квадрат магнитного поля осциллирует с частотой $2\,\omega_{nm}$. Интеграл (4), очевидно, растет со временем, если

$$Q = 2 \omega_{nm}. \tag{5}$$

Последнее условие совпадает с условием резонанса (3). Частота резонатора ω_{nm} может быть записана соотношением (4)

$$\omega_{nm} = c \sqrt{\lambda_n^2 + \left(\frac{\pi m}{a}\right)^2}. \tag{6}$$

Подстановка (6) в (5) дает условие резонанса в виде

$$2 = 2c \sqrt{\lambda_n^2 + \left(\frac{\pi m}{a}\right)^2}, \tag{7}$$

где n—собственные числа поперечного сечения волновода. Отсюда видно, что если $n \neq 0$, то $n \neq 0$ и этот случай может быть рассмотрен методом (1).

Итак, рассмотрим для определенности колебания типа ТМ в указанном выше резонаторе, хотя метод позволяет исследовать также и колебания ТЕ типа. Функция E_z в этом случае удовлетворяет уравнению (2)

$$\left|\frac{\partial^2}{\partial \xi^2} - \frac{\partial^2}{\partial \eta^2} + \lambda_n G(\xi, \eta)\right| \tilde{E}_z = 0, \tag{8}$$

а для $G(\xi, \eta)$ из (1) имеем

$$G(\xi, \eta) = a^{2} \left\{ 1 + 2 \frac{b\Omega}{c} \cos\left(\frac{\Omega a}{c} \xi\right) \cos\left(\frac{\Omega a}{c} \eta\right) + \frac{1}{2} \left(\frac{b\Omega}{c}\right)^{2} \left[\cos\left(\frac{2\Omega a}{c} \xi\right) + \cos\left(\frac{2\Omega a}{c} \eta\right)\right] \right\}.$$

Ищем решение указанного уравнения в виде

$$\tilde{E}_z = \sum_{k=0}^{\infty} U_k(\xi) \cos(\pi k \eta). \tag{9}$$

которое, очевидно, удовлетворяет граничным условиям (-) задачи

 $\partial F_z/\partial \eta = 0$ при $\eta = 0$ и $\eta = 1$. Разложим также $G(\mathfrak{c}, \eta)$ в уравнении (8) в ряд Фурье по той же системе функций

$$G(\xi, \eta) = \sum_{k=0}^{\infty} a_k \cos(\pi k \eta), \qquad (10)$$

где

$$a_k = \frac{4b\Omega^2 a^3}{c^2} \cos\left(\frac{\Omega a}{c}\xi\right) \frac{(-1)^k \sin\frac{\Omega a}{c}}{\left(\frac{\Omega a}{c}\right)^2 - (\pi k)^2} - \frac{2b^2\Omega^2 a^3}{c^3} \frac{(-1)^k \sin\frac{\Omega a}{c}}{4\left(\frac{\Omega a}{c}\right)^2 - (\pi k)^2},$$

$$a_0 = 2a^2 \left[1 + \frac{1}{2}\left(\frac{b\Omega}{c}\right)^2 \cos\left(\frac{2\Omega a}{c}\xi\right)\right] + 4ab\cos\left(\frac{\Omega a}{c}\xi\right) \sin\frac{\Omega a}{c} + \left(\frac{b\Omega}{c}\right)^2 \frac{ac}{2\Omega} \sin\frac{2\Omega a}{c}.$$

Если подставить (9) и (10) в (8) и использовать равенство $a_{-n}=a_n$, то получим

$$U_{k}^{n} + (\pi k)^{2} U_{k} + \frac{1}{2} \lambda_{n}^{2} \sum_{s=0}^{k} U_{s} a_{k-s}, \qquad (11)$$

где k=0, 1, 2, Таким образом, задача сводится к решению бесконечной системы дифференциальных уравнений для определения коэффициентов Фурье $U_k(\xi)$. Эта система весьма удобна для численного решения задачи на ЭВМ.

Заметим, что коэффициенты Фурье a_k убывают с ростом k как k^{-2} , ряд в (11) является знакопеременным. Если к тому же U_k достаточно быстро стремятся к нулю с ростом k, то можно рассмотреть приближение, в котором все $a_k=0$ кроме a_0 . Это фактически означает, что в (8) $G(\xi, \eta)$ заменяется его средним значением по переменной η на отрезке [0,1]. Кроме того, будем считать, что выполняется второе условие (3). Тогда (11) сведется к следующему уравнению:

$$\frac{d^2 U_k}{d\xi^2} + \omega_1 (1 + x \cos(\Omega_1 \xi)) U_k = 0,$$

$$\omega_1 = \frac{a \omega_{nk}}{c}, \quad \Omega_1 = \frac{a \Omega}{c}, \quad x = \frac{2b \lambda_n^2 c^2}{a \omega_{nk}^2} \sin \frac{\Omega a}{c}.$$
(12)

Уравнение (12) есть уравнение Матье, достаточно хорошо изученное в математической литературе (см., например, $(^{5}, ^{6})$). Ниже для исследования решений (12) мы воспользуемся методом $(^{6})$. Будем предполагать, что выполняется условие резонанса (5) и искать решение при $(2) = 2\omega_1$. По $(^{6})$ представим искомое решение в виде

$$U_{R} = \alpha(\xi) \cos\left(\frac{2}{2}\xi + \theta(\xi)\right). \tag{13}$$

В свою очередь α(ε) и θ(ε) ищутся через новые переменные по следующим формулам:

$$u = \alpha \cos \theta$$
, $v = \alpha \sin \theta$. (14)

В (6) показывается, что для и и и имеют место соотношения

$$v = c_1 \frac{e^{\lambda \xi}}{\lambda} \left[-\frac{\varkappa \omega_1^2}{2\Omega_1} + \left(\omega_1 - \frac{\Omega_1}{2} \right) \right] + C_2 \frac{e^{-\lambda \xi}}{\lambda} \left[-\frac{\varkappa \omega_1^2}{2\Omega_1} - \left(\omega_1 - \frac{\Omega_1}{2} \right) \right],$$

$$u = C_1 e^{\lambda \xi} + C_2 e^{-\lambda \xi}, \quad \lambda = \sqrt{\frac{\varkappa^2 \omega_1^4}{4\Omega_1^2} - \left(\omega_1 - \frac{\Omega_1}{2} \right)^2}.$$
(15)

Переменные ; и л (1) в нашей задаче при выполнении (3) связаны соотношениями

$$\eta = \frac{x}{a} - \frac{b}{a} \cos \frac{\Omega z}{c} \sin \frac{\Omega x}{c}, \quad \xi = \frac{z}{a} - \frac{b}{a} \sin \frac{\Omega z}{c} \cos \frac{\Omega x}{c}. \tag{16}$$

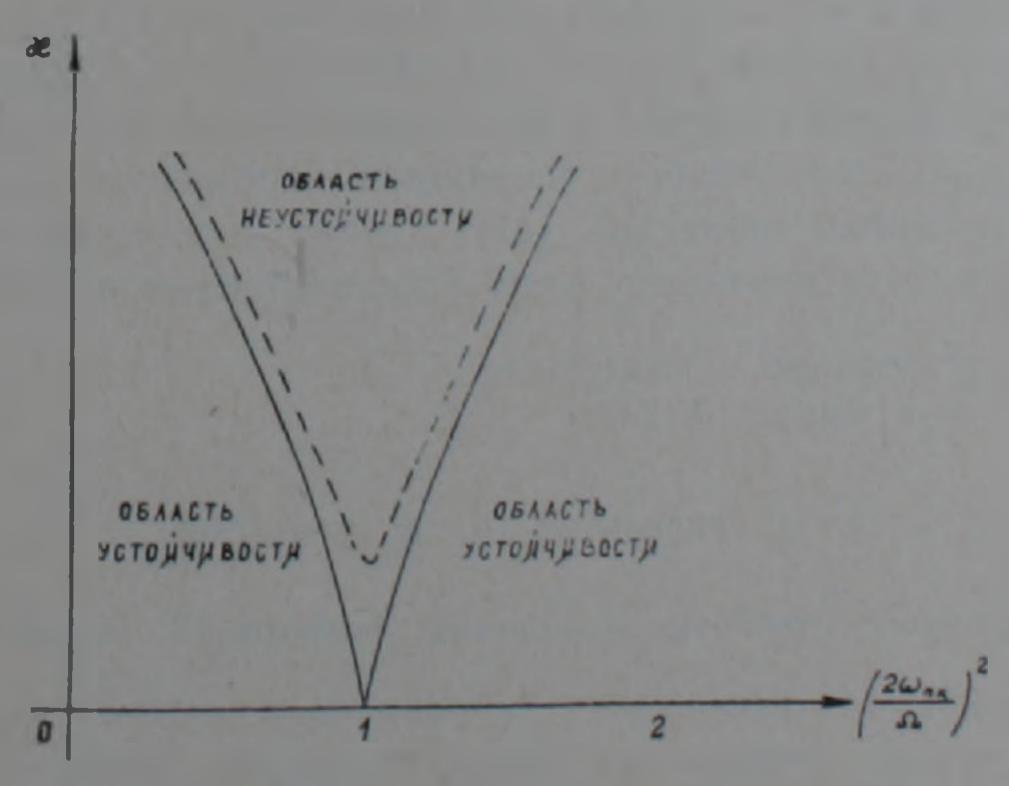
Если λ в (15) действительно, то с ростом с а следовательно по (16) и τ, амплитуда α(ξ) будет возрастать по экспоненциальному закону. Действительные значения л в (15) определяются соотношениями

$$2\omega_1\left(1-\frac{x}{4}\right)<\Omega_1<2\omega_1\left(1+\frac{x}{4}\right)$$
 (17)

или с помощью (12)

$$2\omega_{nk} - \frac{b}{a} \frac{i \frac{a^2}{n^2} c^2}{\sin \frac{2a\omega_{nk}}{c}} < 2 < 2\omega_{nk} + \frac{b}{a} \frac{i \frac{a^2}{n^2} c^2}{\cos_{nk}} \sin \frac{2a\omega_{nk}}{c}.$$
 (18)

В этой области значений параметров амплитуда колебаний в резонаторе возрастает с течением времени экспоненциально (см. рисунок.



Области устойчивости колебаний резонатора

сплошная линия). Резонанс такого типа естественно называть параметрическим.

Заметим, что (18) есть одновременно условие самовозбуждения колебаний в резонаторе с периодически колеблющейся стенкой. При

$$\Omega = 2\omega_{nk}\left(1 \pm \frac{\pi}{4}\right)$$
 или

$$\Omega = 2\omega_{nk} \pm \frac{b}{a} \frac{\lambda_n^2 c^2}{\omega_{nk}} \sin \frac{2a\omega_{nk}}{c} \tag{19}$$

колебания в резонаторе становятся чисто периодическими с периодом для основного типа колебаний равным 4-/2. Условия (19) являются границами областей, в которых колебания резонатора либо устойчивы, либо неустойчивы. Эти области изображены на рисунке в переменных z, $2\omega_{nk}/2$.

При учете потерь в стенках, так же как и в диссипативных параметрических системах, область неустойчивости колебаний резонатора несколько меняется. Это можно подтвердить следующими полукачественными соображениями. Пусть движущаяся граница обладает импедансом ζ_0 . Тогда (1) затухание колебаний в стационарном резонаторе определяется фактором $\exp\left\{-\frac{\sqrt{2}}{a}\right\}$. Поскольку связано с x, со-

отношением (16), то в первом приближении $\mathfrak{s} = -\frac{1}{a}$ и возможность

нарастания колебании в резопаторе определяется соотношением между и л. Ясно, что неустойчивость колебаний будет иметь место. если л> пли при

$$2\omega_1 - 2\sqrt{\frac{\varkappa^2\omega_1^2}{4} - \zeta_0^2} < 2 < 2\omega_1 + 2\sqrt{\frac{\varkappa^2\omega_1^2}{4} - \zeta_0^2}.$$

Соответствующая область неустойчивости колебаний резонатора показана на рисунке пунктирной линией. Для создания режима возбуждения колебаний в этом случае необходима большая амплитуда колебаний резонатора. Естественно, что все приближение справедливо лишь
для малых колебаний границы и при значительной величине импеданса стенки вопрос устойчивости колебаний необходимо решать с использованием точных уравнений (11), однако соответствующее исследование может быть проведено лишь с использованием ЭВМ.

Институт радиофизики и электроники Академии наук Армянской ССР

Կ. Ա. ՔԱՐՍՈՒԿՈՎ, Գ. Ա. ԳՐԻԳՈՐՅԱՆ

Պարբերաբար շարժվող սանմանով ծավալային ռեզոնատոր

Տեսականորեն հետավոտվում է պարթերական օրենքով շարժվող պատով ալիքատարային ռեվոնատորը՝ պատի և դաշտի միջև ռեզոնանսային փոխազոյեցության դեպքում, երբ շարժվող պատի էներդիան էֆեկտիվորեն Հաղորդվում է դաշտին։ Գտնվել են խնդրի լուծումները և Հայտնաբերվել այդ լուծումների կայունության տիրույթները։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

¹ К. А. Барсуков, Г. А. Григорян, Радиотехника и электроника, т. 21, вып. 1 (1976). ² Г. А. Григорян, Изв. АН АрмССР, физика, т. 15, вып. 1, с. 59 (1980). ³ Г. А. Аскарьян, ЖЭТФ, т. 42, 1672 (1962). ⁴ А. Н. Тихонов, А. А. Самарский, Уравнения математической физики, «Наука», М., 1977. ⁵ Г. Бейтмен, А. Эрдейи, Высшие трансцендентные функции, «Наука», М., 1965. ⁶ Н. Н. Боголюбов, Ю. А. Митропольский, Асимптотические методы в теории нелинейных колебаний, «Наука», М., 1974. ⁷ Г. А. Григорян, Изв. АН АрмССР, физика, т. 15, вып. 1, с. 29 (1980).