LXXII 1981

УДК 581.12

ФИЗИОЛОГИЯ РАСТЕНИЯ

Академик АН Армянской ССР В. О. Казарян, А. А. Чилингарян

О реакции растений томата на удаление плодовых кистей

(Представлено 8/VII 1980)

При переходе растений к репродуктивному развитию листовые ассимиляты и продукты обмена веществ корней, как правпло, направляются, главным образом, к плодам и семенам (1.2), тем самым подавляя вегетативный рост (2). Массовое завязывание и рост плодов в дальнейшем в значительной степени ограничивает формирование новых цветков и плодов (3,4), тогда как частичное удаление развивающихся плодов (3-5) вновь стимулирует образование новых. Мы располагаем данными относительно подавления и роста корней в период плодоношения (36,4). При этом раннее плодоношение, как правило, через ослабление роста отрицательно влияет на общую урожайность сельскохозяйственных культур. Отсюда следует, что для активации роста н повышения урожайности прежде всего необходимо стимулировать развитие корневой системы до начала цветения и формирования плодов. Это относится в первую очередь к овоще-бахчевым культурам, цветение, завязывание и созревание плодов которых протекает одновременно. Для повышения функциональной активности корней этих культур, по всей вероятности, следует периодически производить частичное удаление растущих плодов. Для подтверждения этого положения нами были проведены опыты с томатом сорта Еревани-14.

После наступления фазы завязывания плодов растения разделили на четыре группы. У растений одной группы проводилось систематическое удаление плодовых кистей (2), у другой плодоножки удаляли в течение лишь первых двух недель (3), у третьей (4)—в течение первых трех недель. В качестве контроля брались неповрежденные растения (1).

После указанных операций в определенные сроки в листьях, корнях и пасоке, полученной за четыре часа, были проведены следующие определения: сухого веса, общей и рабочей поглотительной поверхности корней и активности поглощения по Колосову (8) с некоторыми видоизменениями (9), форм азота по Кьельдалю (10), поверхности листьев методом высечек (11), интенсивности фотосинтеза по Чатскому и Славику (12). Повторность определений 4—5-кратная, полученные данные обрабатывались статистически. Образцы для анализа брались в следующие сроки: у второй группы на 8-й (25/VII), у третьей группы на 16-й (16/VIII) и 47-й (16/IX), а у четвертой группы на 9-й (16/VIII) и 40-й (16/IX) дни.

Частичное и непрерывное удаление плодовых кистей томата заметно сказалось на сухом весе корней (табл. 1). Так, удаление плодовых

Таблица 1 Влияние удаления плодовых кистеи на массу и поглатительную активность корней

Варианты	Сроки опреде- лений	Сухой вес.	Общая по- верхность, для ³		Интенсив- ность погло- щения (жг г сухого ве- щества, 10')
Контроль	25/VII 16/VIII 16/IX	1.74+0.02 4.15+0.06 3.02+0.05	129.5+1.08	77.6±1.19 52.5±1.08 27.7±0.21	5,47±0,15 5,15±0,10 0,89±0.03
Непрерывное удаление плодовых кистей	25/VII 16/VIII 16/IX	2,71±0,10 6,50±0,25 7,85±0,23	174.3+2.04	91.3±1.04 98.8±1.35 105.8±2.13	7.63±0.05 8.00±0.07 8.85±0.12
Удаление плодовых кистей в течение 2 недель		4,91±0,13 4,61±0,09	169.7±2.13 165.0±1.46	110.4±3.42 98.9±2.54	8.85±0.14 9.13±0.10
Удаление плодовых кис- тей в течение 3 недель	16/VIII 16/IX	5,62±0,15 6,78±0,21		105.6±3.12 89.7±2.25	8.64±0.09 8.31±0.15

кистей у второй группы привело к увеличению общей массы корней во все сроки (25/VII, 16/VIII, 16/IX) соответственно на 58,5, 56,6, 159,9% по сравнению с контролем. Аналогично изменился и сухой вес корней у третьей и четвертой групп. При этом было замечено, что непрерывное удаление плодовых кистей приводит к более существенному увеличению сухого веса корней, чем частичное. Изменение этого показателя у корней растений всех групп протекает примерно одинаково, лишь с той разницей, что у второй и четвертой групп сухой вес корней достигает максимума в конце вегетации, а у контроля и третьей группы-в фазе созревания плодов. Изменение общей и рабочей поглотительной поверхности корней осуществляется с той же закономерностью, что и сухого веса. Примененная фитотехника способствовала значительному увеличению общей и, в особенности, рабочей поглотительной поверхности корней. Так, если на восьмой день (25/VII) удаления плодовых кистей у второй группы общая поверхность корней увеличилась на 10,2%, то рабочая—на 17,7%. В остальные сроки эта разница становится еще более заметной. Аналогично изменились указанные локазатели и у остальных вариантов.

Таким образом, хирургическое вмешательство способствовало

увеличению общей поверхности корней, причем большая доля пришлась на рабочую поверхность. Значительный рост этого показателя привел к интенсификации их поглотительной деятельности. Более заметно подобная тенденция проявилась при частичном удалении кистей (третья и четвертая группы), в особенности у третьеи группы, где поглотительная деятельность корней была выше соответственно по фазам развития в 1,7 и 10 раз по сравнению с контролем. Столь необычное увеличение поглотительной способности корней в конце вегетации у опытных растений, вероятно, можно объяснить тем, что удаление плодовых кистей способствовало обогащению корней ассимилятами, их росту и функционированию. О старческом состоянии корней контрольных растений можно судить и по разнице между показателями интенсивности поглощения в конце вегетации и предшествующей фазе развития.

Удаление плодовых кистей положительно повлияло на количество выделенной пасоки и ее сухой вес (рис. 1). Хотя на восьмой день

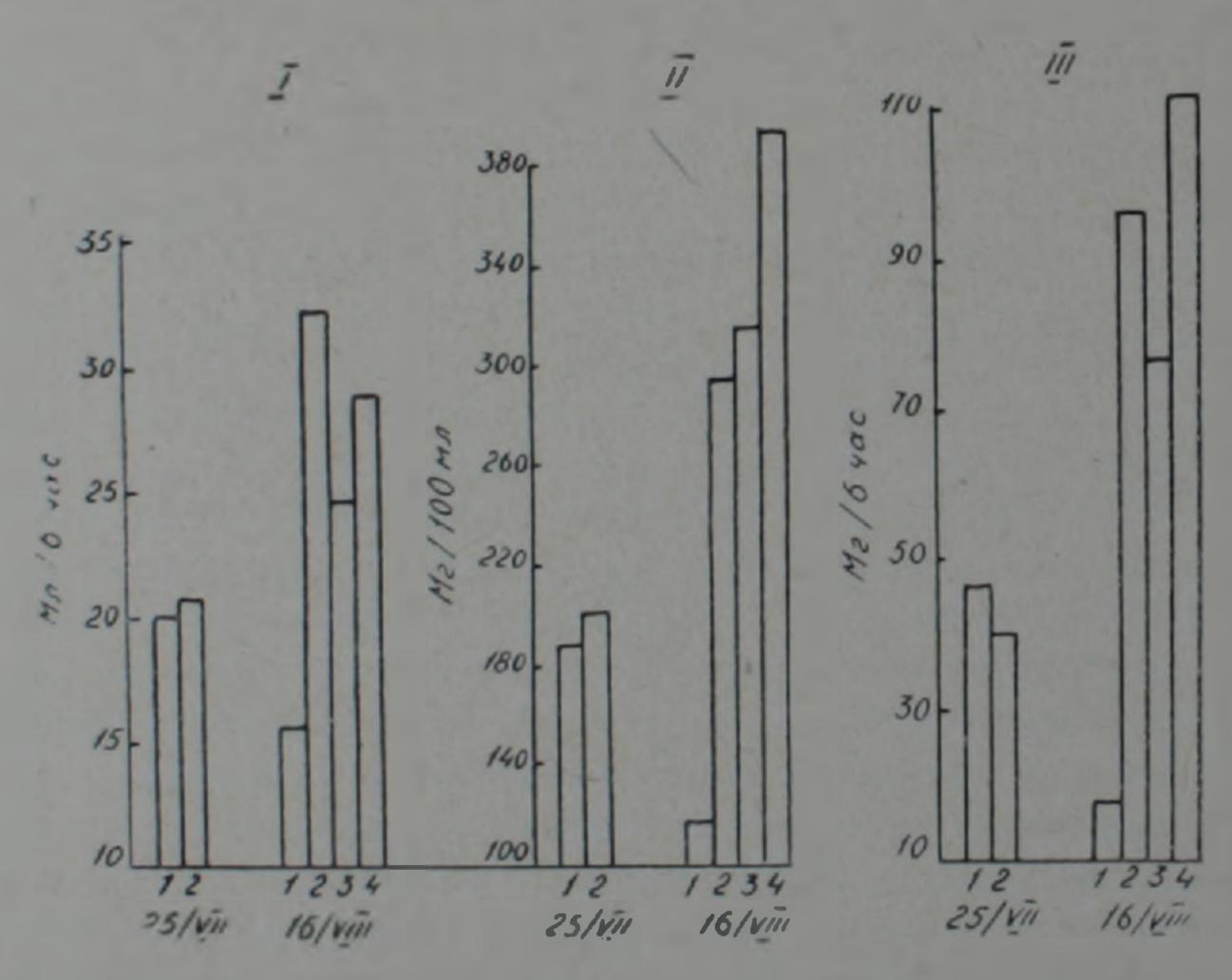


Рис. 1. Влияние удаления плодовых кистей на выделенное количество (1) и сухой вес (11) пасоки и вынос ею сухого вещества (111). 1—контроль; 2—непрерывное удаление плодовых кистей; 3—удаление плодовых кистей в течение двух недель; 4—удаление плодовых кистей в течение трех недель

(25/V) наблюдалось некоторое уменьшение количества пасоки и ее выноса, было замечено повышение содержания сухих веществ в ней. Это явление, по-видимому, носило временный характер и в дальней-ших определениях не наблюдалось. Так, у второй группы на 30-й день (16/VIII) удаления плодовых кистей количество выделенной пасоки уже увеличилось на 111,0%, а ее сухой вес и вынос вещества соответственно—на 106,3 и 441,5% по сравнению с теми же показателями кон-

троля. Аналогичные изменения были выявлены и у растений третьей и четвертой групп, только с той разницей, что здесь сухой вес пасоки был значительно больше, чем у второго варианта.

Таким образом, частичное и непрерывное удаление плодовых кистей способствует активации корневой деятельности. В результате в надземные органы опытных растений по сравнению с контрольными направляется больше пасоки. Этот факт подтверждается и результатами исследований различных форм азота в пасоке (рис. 2). На вось-

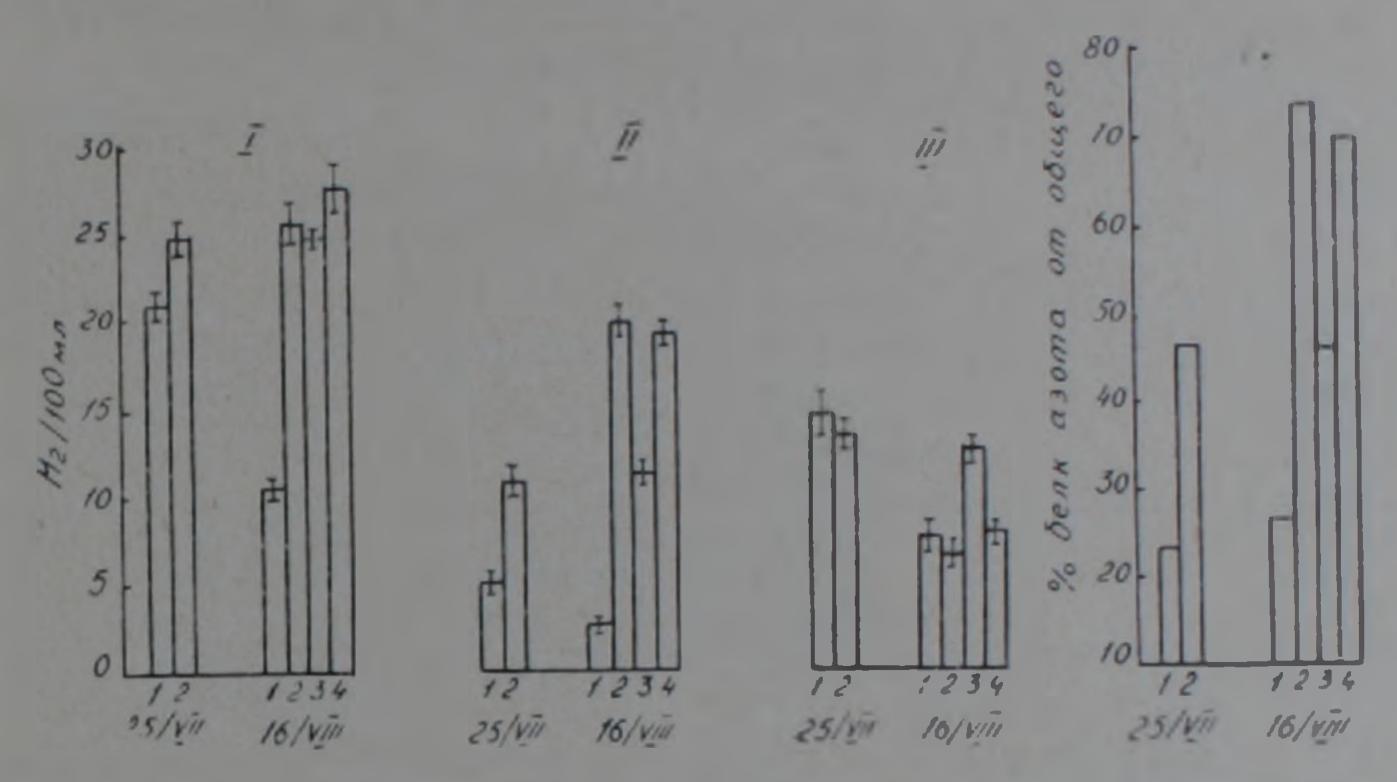


Рис 2 Влияние удаления плодовых кистей на содержание различных форм азота в пасоке: /—общего; //—белкового; ///—небелкового (группы те же, что и на рис. 1)

мой день (25/VII) систематического удаления плодовых кистей (вторая группа) содержание общего азота в пасоке повысилось на 16,7, а белкового—на 120,7% по сравнению с контролем. В последующих фазах развития эта разница еще больше увеличилась в пользу опытных растений. Например, если на 30-й день (16/VIII) систематического удаления плодовых кистей общий азот повысился на 141,7, то белковый—на 551,1%. У третьей группы в те же сроки содержание общего азота увеличилось соответственно на 132,1 и 160,2%, а количество белкового азота—на 289,5 и 565,2%. Процент последней формы азота от общего у опытных растений всегда выше, чем у контрольных. Это показывает, что синтетическая способность корней опытных растений повысилась, в результате чего в надземные органы направилось больше белкового азота, чем у контрольных.

Нами исследованы общая масса и некоторые физиологические показатели листьев в зависимости от частичного и непрерывного удаления плодовых кистей.

Как видно из приведенных данных (табл. 2), на восьмой (25/VII) 30-й (16/III) и 61-й дии удаления плодовых кистей у растений второй группы листовая поверхность увеличилась соответственно на 62,0, 28,5 и 154,3%, а сухой вес этих листьев—на 90,4; 68,7 и 151,4%.

Подобным же образом изменяются указанные показатели у расте-

ний третьей и четвертой групп. При этом с увеличением числа удаленных кистей увеличивались поверхность листьев и их сухой вес. Кроме того, выяснилось, что у опытных растений увеличилось и отношение рабочей поглотительной поверхности корней к площади листьев. Исключение составляют только результаты восьмого дия определения у второго варианта, где указанное соотношение иссколько ниже, чем у контроля.

Таблица 2 Влияние удаления плодовых кистей на рост и сухой вес листьев

Группы	Сроки опреде- лений	Поверх- ность,	Сухой вес,	Рабочая по- верхность корней Поверхность листьев
Контрояь	25 VII 16 VIII 16/IX	17,44+0.28 15,99+0.80 6,46+0.26	9,36±0.50 8,77±0,70 3,69±0.12	4,44 3,34 4,27
Непрерывное удаление плодовых кистей	25/VII 16/VIII 16/IX	28,26±0,09 20,56±0,17 16,43±0,22	17.83+0.09 14.80+0.20 9.28+0.28	3.19 4.81 6.43
Удаление плодовых кистей в течение 2 недель	16,VIII 16/IX	18,85±0,19 10,80±0,31	12.36±0.26 5.23±0.25	5.85 9.06
Удаление плодовых кистен в течение 3 недель		19,46±0,23 12,36±0,21		5.42

Частичное и пепрерывное удаление плодовых кистей способствовало также усилению интенсивности фотосинтеза (рис. 3). Как было уже отмечено, непрерывное и, в особенности, частичное удаление плодовых кис-

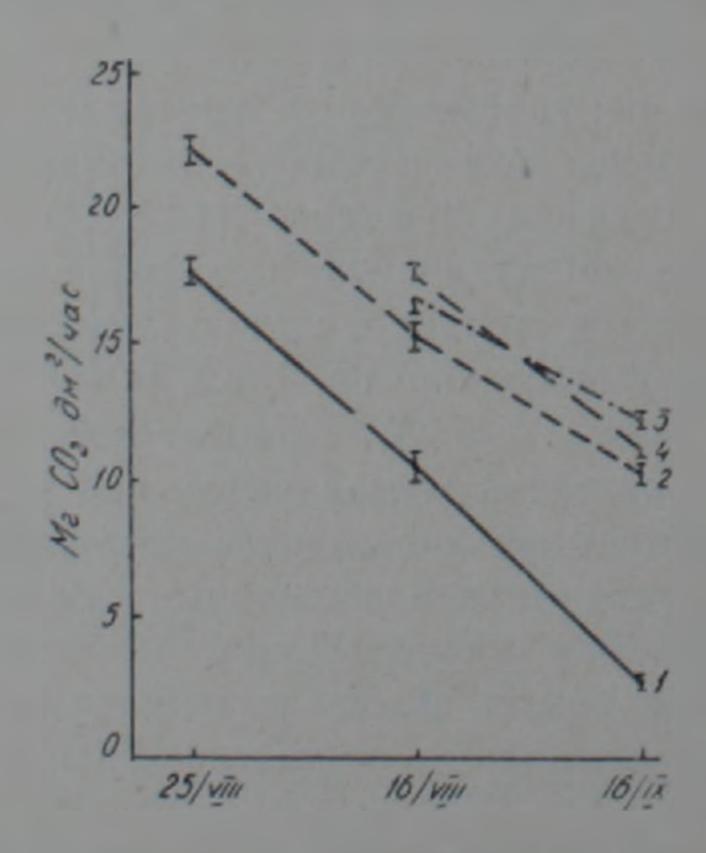


Рис. 3. Влияние удаления плодовых кистей на интенсивность фотосинтеза листьев (группы те же, что и на рис. 1)

тей привело к активации метаболической деятельности корневой системы, что является одним из решающих факторов активации фотосинтеза. 56

Наиболее заметная активация фотосинтеза имела место у групп (3, 4), у которых плодовые кисти удалены частично. Если на 8-й (25/VII), 30-й (16/VIII) и 61-й (16/IX) дни систематического удаления кистей и листьев во второй группе интенсивность фотосинтеза соответственно увеличилась на 25,2; 40,8 и 151,9%, то у третьей группы на 16-й (16/VIII) и 47-й (16/IX) дни она нарастала на 61,5 и 315,7%.

Обобщая изложенные выше результаты, мы вправе констатировать, что удаление плодовых кистей является мощным фактором, положительно влияющим на рост, поглотительную и метаболическую деятельность корней, а также увеличение общей массы листьев и их функциональную активность.

Таким образом, формирование плодов как органов расходования ассимилятов и корневых метаболитов приводит к уменьшению доли веществ, поступающих в корни, что вызывает ослабление их роста и функционирования. Для предотвращения физиологической инактивации корней, продления жизни и общей продуктивности растений следует провести частичное удаление плодовых кистей, тем самым усиливая снабжение корней ассимилятами. Указанный и другие фитотехнические приемы следует использовать именно для нормального обеспечения двухстороннего корне-листового обмена.

Институт ботаники Академии наук Армянской ССР

Հայկական IIIIՀ ԳԱ ակադեմիկոս Վ. Հ. ՂԱՉԱՐՅԱՆ, Ա. Ա. ՉԻԼԻՆԳԱՐՅԱՆ

Լոլիկի բույսերի ռեակցիան պտղաողկույզների հեռացման նկատմամբ

Բույսերի գեներատիվ զարդացման փուլում պլաստիկ նյութերի հոսքը տերևներից և արմատներից հիմնականում ուղղվում են դեպի նոր առաջացող պտուղներն ու սերմերը, որի հետևանքով ճնշվում է բույսերի վերերկրյա մասի և արմատների վեղետատիվ աճը։ Մասսայական պտղաբերումը և պտուղների աճը սահմանափակում է նաև հետագա նոր պտղաօրգանների գոյացումը։

Լոլիկի բուլսերի վրա կատարված մեր փորձերը ցույց են տալիս, որ պտղաողկույղների վաղ և հատկապես մասնակի հեռացումը նպաստում է արմատների աճին և նրանց ֆունկցիոնալ ակտիվության բարձրացմանը, որն իր ՝ևրքին բերում է տերևների ֆոտոսինքեզի ինտենսիվության ու աճի ուժեղացմանը
և բույսի ընդհանուր արդյունավետության բարձրացմանը։ Պտղաողկույզների
վաղ և մասնակի հեռացումը, ինչպես նաև արտադրության մեջ կիրառվող
այլ ֆիտոտեխնիկական միջոցառումները ՝ենց նպատակ ունեն ապաւովելու
արմատ-տերև երկկողմանի նորմալ նյութափոխանակությանը։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

1 В. О. Казарян, Старение высших растении, Наука, М., 1969 И. И. Туманов, З Э Гореев Труды Ин-та физиологии растении им. Тимпрязева, т. 7, вып. 2 (1951). ³ А. Г. Авакям. Биологические особенности роста и развития важнейших овощных и бах-чевых культур. Докт дисс. Ереван, 1964. ⁴ В. П. Макян, Пути получения высоких урожаев томатов и огурцов в открытом и защищенном групте в условиях Степанаванского района Армянской ССР. Канд. дисс. Ереван, 1971 ⁵ З. Э. Гареев, Изв. АН Киргиз. ССР, серия биол. наук, т. І, вып. 3 (1959). ⁶ В. О. Казарян, В. А. Давтян, А. А. Чилинеарян, Физиология растений, т. 20, № 12 (1973). ⁷ В О. Казарян, Труды Ин-та ботаники АН АрмССР, т. 18 (1972). ⁸ И. И. Колосов, Поглотительная деятельность корневых систем растений, Изд-во АН СССР, М., 1962. ⁹ В. О. Казарян, А. Г. Абрамян, Г. Г. Габриелян, Биологический журн. Армении, т. 19, № 6 (1966). ¹⁰ А. И. Белозерский, Н. И. Проскуряков. Практическое руководство по биохимии растений. Советская наука, М., 1951. ¹¹ А. А. Ничипорович, Л. Е. Строгонова, Фотосинтетическая деятельность растений в посевах Изд-во АН СССР, М., 1961. ¹² И. Чатский, Б. Славик, Полевой прибор для определения интенсивности фотосинтеза, ВюІ. plantar., 2(2) (1960).