LXXI 1950

УДК 517 232, 235

MATEMATUKA

А. А. Вагаршакян

Граничные свойства некоторых весовых классов

(Представлено академиком АН Армянской ССР М М Джрбашяном 4/VI 1980)

Пусть $R_{+}^{n+1} = \{(x_1, x); x \in \mathbb{R}^n, x_1 > 0\}$ —полупространство, 1 , <math>h(t), t > 0, —неотрицательная монотонная функция. Через (R_{+}^{-1}) мы обозначим пространство обобщенных функций $f(x_1, x)$, для которых

$$\int_{\mathbb{R}^{n-1}}^{\mathbb{R}^n} - \left(\int_{\mathbb{R}^n}^{\mathbb{R}^n} |f(x_1, x)|^p h(x_1) dx dx_1 \right)_{p}^{p} - \sum_{|x|=1}^{\infty} \left(\int_{\mathbb{R}^n}^{\infty} \left| \frac{\partial^{\alpha} f(z)}{\partial z^{\alpha}} \right|^p h(x_1) dx dx_1 \right)_{p}^{\frac{1}{p}},$$

где $z=(x_1,x), z=(z_1,\ldots,z_{n+1})$ — мультииндекс, а $|z|=z_1$... $+a_{n+1}$. На весовую функцию h(t) обычно ставят ограничение

$$\int_{0}^{\infty} h(t) dt < \infty, \tag{1}$$

так как в противном случае все функции из W^* будут стремиться к нулю при приближении к границе. На h(t) естественно следует изложить ограничение

$$\int_{0}^{\infty} h t^{-p}(t) dt < \infty. \tag{2}$$

Если приведенный выше интеграл расходится, то существует функция W_{A}^{h} , которая стремится к бесконечности при приближении к границе В дальнейшем всегда предполагается, что интегралы (1) и (2) схолятся и кроме этого $h(2t) \sim h(t)$, при $t \rightarrow 0$. В настоящей статье рассматриваются такие W, для которых k = 1.

Из сходимости интеграла (2) следует, что любая функция $f(x_1, \dots, x_n) = 0$ почти всюду на ∂R_+^{n-1} имеет нормальные граничные значения, т. е. существует конечный предел

$$\lim_{x\to 0} f(x_i, x)$$

для почти всех век После этого замечания возникают следующие дла вопрося: можно ли утверждать нечто большее, чем существование граничных значений почти всюду, и второй вопрос — описать след функции из W на границе И Обе задачи были поставлены давно, и их решению посвящены многие работы. Оказалось, что можно дагь положительный ответ из первый вопрос. Первой работой в этом направлении была статья А. Бёрлинга (1), доказавшего, что гармоническая f (R1 (R2) имеет конечные пормальные граничные значения всюду на при кроме некоторого множества, логарифмическая емкость которого равиа нулю. Дени (2) обобщил результат А. Бёрлинга для прострянств W_{+}^{1} R=1 $n\geqslant 1$, показав, впрочем, что гармоничность не играст никакой роли в указанной выше задаче. Следующий шаг был сделан .1. Карлесоном (3), который рассматривал пространства ₩ (/) 0 ≈<1. Г. Валлин (4) обобщил результаты .1. Карлесона на многомерный случай. Оказывается, что вышеприведенная задача приводится к исследованию граничных свойств функцин, допускающих представление

$$f(x) = \int \frac{R(y)}{|x-y|^{n-1}} dy \tag{3}$$

где

$$\int\int |g(x_1,x)|^p h(x_1) dx dx_1 < \infty.$$

Функции, допускающие представление (3), мы обозначим через L_{-h}^1 . Важный шаг в исследовании граничных свойств функции из L_{-h}^1 был сделан в работе Ю. Решетняка (*). У Ю. Решетняка $1 и весовая функция <math>h(t) \equiv 1$. Исследованию граничных свойств функции из L_{-h}^1 посвящена также работа автора (*). В статье (*) дано полное описание граничных свойств классов L_{-h}^1 при самых общих ограничениях на весовую функцию h(t) (предполагалась только монотонность h(t)). Однако исследование пространств $L_{p,h}^1$ не всегда дает полную информацию о граничных свойствах функции из $W_{-h}^{(t)}$. Эти два пространства совпадают только для таких весовых функций, для которых

$$\sup_{t>0} \left(\frac{h_{p-1}(t)}{t} \int_{0}^{t} \frac{dx}{h_{p-1}(x)}\right) < \infty. \tag{4}$$

С помощью новых интегральных представлений для функции из $\mathbb{Q}_{p, \bullet}^{1}$ удалось доказать более точные результаты о граничных свойствах.

Для формулировки нашей теоремы принедем одно определение. Для любого измеримого множества $E \subset \partial R^{n+1}$ положим

$$C_h(E) = \left\{ \inf \left[\int_{0}^{\infty} \int_{\mathbb{R}^n} \frac{du(y)}{\prod (t^2 + (x_1 - y_1)^2)} \right] \frac{t^{n_1}}{h} dt dx_1 dx_2 \right\}$$

где $\frac{1}{p} = \frac{1}{q}$ — = -1, — = -2E означает, что μ — вероятностная мера, сосредоточенная в E.

Теорема 1. Любая функция $f \in W_{p,h}^+$ (R^{n+1}) всюду на ∂R_+^{n+1} кроче некоторого множества E, для которого $C_h(E)$ 0, имеєт нормальные граничные значения.

Заметим, что существуют весовые функции h(t), для которых имеет смысл говорить о граничных значениях, однако условие (4) не удовлетвориется. Следующая теорема дает возможность получить окончательные результаты именно для таких весовых функций. Приведенный ниже результат в несколько другой форме есть у Γ . А. Калябина (10).

Теорема 2. Пусть
$$f(x_1, x) \in W_{A}$$
 и $\lim_{x_1 \to 0} f(x_1, x) = F(x)$.

Тогда

$$\sum_{j=1}^{n} \int_{\mathbb{R}^{n}} \int_{0}^{\infty} \left| \int_{[x_{j}]>u} e^{it_{j}x_{j}} F(x_{1}, \dots, x_{n}) dx_{j} \right|^{p} \frac{du}{h_{p-1}^{\frac{1}{n}} \left(\frac{1}{u}\right) \left(\int_{u}^{\frac{1}{u}} \frac{dt}{h_{p-1}(t)}\right)^{p}}$$

$$(5)$$

 $dx_1 \dots dx_{l-1}dt_l dx_{l+1} \dots dx_{l} < \infty$

206

Обратно, любая функция F, удовлетворяющая (5), является следом некоторой функции из W^1 , на границе ∂R^{n+1} .

Мы скажем, что $f(x_1, \dots) \in \mathbb{R}^n$ если она определена на \mathbb{R}^{n+1} , дифференцируемая и

$$\sup_{f(x_1,x) \in D_{n+1}} (|\operatorname{grad} f(x_1x)|h(x_1)) < \infty.$$

Для классов W^1 первый вопрос автоматически исчезает. Следующая теорема двет полный ответ на второй вопрос.

Теорема 3. Пусть $f(x_1, x) \in W^1$ ". Тогда

$$|f(0, x) - f(0, y)| < c \int_{0}^{|x-y|} \frac{dt}{h(t)}$$

где 🧠 Обратно, если F(x) имеет модуль непрерывности мень-

$$me \int \frac{dt}{h(t)}$$
, то существует $f(x_1, x) \in \mathbb{W}$ макая, что $f(0, x) = F(x)$.

Институт математики Академин наук Армянской ССР

ա. Ա. Վաղարձատձաջ

Ուոշ կչոային դասներ եզբային հատկությունները

դարրըևիր, լախահեվուղ է՝ սև կ(լ) իշտակիր ֆուրինիար ևավահաևուպ է չթարկան տաև Հոմվադուղ <mark>ձիատևիվուղ ըր _Ար</mark> (Այր) իշտակիր տահագուխիսւրրբևն

$$\int_{0}^{\infty} h(t)dt < \infty, \quad \int_{0}^{\infty} h(t)dt < \infty$$

և $h(2t) \sim h(t)$, երբ t = 0։ Թեորեմ 1-ում ապացուցվում է, որ կամալական $f \in W^1_{p,h}(R^{n-1}_+)$ ունի նորմալ եզբալին արժեքներ ամենուրեք ∂R^{n+1}_+ -ի վրա, բացառությամբ գրո ունակության բազմության։ Հաչորդ թեորեմը նվիրված է և դրային ֆունկցիայի նկարագրությանը։

ատականող որևէ ֆունկցիայի հետր -ի վրա։ Հանդիսանում է Ա (R - 1 դասին փունկցիայի վրա, որոնց դեպքում այն հանդիսանում է Ա (R - 1 դասին հանդարարում է և և հարդին հանդարարում է և և հարդին հար

Վերջին թեորհմում արվում է \VI դասի ֆունկցիալի հետ դի լբիվ

ЛИТЕРАТУРА — ЭГЦЧЦЪПЬРВПЬЪ

² A. Beurling. Acta Math., vol. 72 (1940) ² I. Deny, Acta Math., vol. 82 (1950).

³ Л. Карлесон. Избранные проблемы теории неключительных множеств, Мир. М.,
207

1921. ⁴ H. Wattle, Trans. Amer. Math. So., vol. 102 №3 (1965). Ю. Г. Решемин. Сиб матем. жури., 13, 2 (1972). ⁴ A. A Вагаршакии, Сиб. матем. жури., 5 (1971). Е. Gaghardo, Inind Sem. Mat. Padova, vol. 27 (1971). ⁶ N. Irim zajn, K. Smith, Ann. Inst. Fourier, vol. 11 (1961). ⁹ E. M. Stein. Bull. Amer. Math. Soc., vol. 67 (1961); vol. 68 (1962). ¹⁰ N. Aronszajn, F. Mulla, P. Sziptyekt, Ann. Inst. Fourier, vol. 13, (1961). ¹¹ П. И. Лизоркии, ДАН СССР, т. 150, №5 (1963). ¹² О. В. Бесов. Труды Матем. ни-та АН СССР, 60 (1961). ¹³ О. В. Бесов. ДАН СССР, т. 126, № 6 (1959). ¹⁴ Л. Д. Кудрявцев, Труды МЫАП СССР, 55 (1959). ¹⁵ П. И. Ли зоркии, ДАН СССР, т. 126, № 4 (1959), 703—706. ¹⁶ Г. А. Калябии, ДАН СССР,