LXXI

1980

2

УДК 517.53

MATEMATHKA

Р. Аб. Апетисин

О представлении аналитических функций в круге в виде бесконечных произведений типа Бляшке

(Представлено чл-корр, АН Армянской ССР II У Аракеляном 15/IV 1980)

11. Шур (1) доказал, что если f(z) аналитична и |f(z)| < 1 в круге |z| < 1, то существует последовательность произведений Бляшке, равномерно сходящаяся к ней внутри этого круга. Простое доказательство этого факта содержится в работе (2) Л. Карлесона. Существенное обобщение этого результата Шура было получено в работе (3) М. М. Джрбашяна в теоремах 5.12-5.13, установленных совместно с Н. У. Аракеляном.

В связи с указанными результатами естественно рассмотреть следующую задачу: какие функции, аналитические в |z| < 1, можно представить в виде

$$\prod_{k=1}^{n} \frac{1}{|a_k|} \cdot \frac{R_k(a_k-2)}{R_k^2 - a_k} R_k > |a_k| > 1 \sum_{k=1}^{n} (R_k - |a_k|) < +\infty.$$
 (1)

и оценить скорость убывания (R_h —) в зависимости от свойств функций. Н. У. Аракеляном была предложена схема, сводищая эту задачу к методу Вольфа (4), позволяющему разлагать функции в рады вида $= (z)^{-1}$. Следуя этой схеме, в настоящей заметке устанавливается результат, аналогичный теореме Вольфа Данжув (4) для рядов вида $= (z)^{-1}$. Затем для некоторых классов аналитических в круге $= (z)^{-1}$ дается представление в виде (4) Устанавливается также скорость приближения некоторыми специальными дробями.

Введем соответстнующие обозначения. Пусть $D_R = |z| |z| |< R|$ Обозначим через $A(D_R)$ множество функций, аналитических в D_R и непрерывных в D_R . В случае R=1 $A(D_1)$ будем обозначать через A, а D_1 через D. Всюду и лальнейшем, если f(z) 0, $z \in D_R$, f(0) > 0, то под функцией $\ln f(z)$ будем понимать главную ветяь логарифма.

Для дальнейших рассуждений нам понадобится лемма 1, яв-

ляющаяся уточнением одного утверждения работы (2) (см. также (4), стр. 205, лемма 3).

Леммя 1. Пусть $f \in A(\overline{D}_R)$, R > 1, Re f(z) < 0, $z \in \overline{D}_R$, Im f(0) = 0. Пусть $R \in R$ Тогоа существует рациональная функция вида

$$B_n(R, f, z) = \prod_{k=1}^{\infty} \frac{R(-k-z)}{R^2 - \overline{R}}$$

zde

H

$$L_{k} = \rho_{k} \exp\left(\frac{2\pi i k}{n}\right) R_{1} < \rho_{k} < R, k = 1, 2 ... n, n > \left|\frac{32\pi R}{R - R_{1}} + 1\right|.$$

 $m = \max_{x \in \overline{D}_R} |\text{Re } f(x)| \max_{x \in \overline{D}_R} x = \sum_{x \in \overline{D}_R} x$

$$|f(z) - \ln B_n(R, f, z)| < \frac{64\pi R}{n(R-R)} \cdot (\mu + \mu^2)$$

Докизательство. На окружности |I| = R возьмем дуги та |I| = R. $\frac{1}{n} = R$. $\frac{1}{n} = R$

$$\rho_R^2 - R^2 = \frac{R}{\pi} \int_{0}^{\infty} \text{Re} f(z) |dz|.$$

учитывая выбор n, получаем R < q < R Положим $= p_k \exp\left(\frac{2\pi i k}{R}\right)$

$$B_n(R, f, z) = \prod_{k=1}^n \frac{\mathbb{I}_k}{\mathbb{I}_{kk}} \frac{R(\mathbb{I}_k - z)}{R^k - \mathbb{I}_k z}$$

|3'читывая, что при $n > \left| \frac{32\pi R}{R - R_1} (\mu - 1) \right|$ имеет место неравенство

$$\left|\frac{(|\zeta_A|-R)(R|\zeta_A|-\zeta_Az)}{R^2-\zeta_Az}\right|<\frac{1}{2},$$

из формулы Шварца при $\mathbb{E}[D_R]$ получим

$$|f(z)-\ln B_n(R,f,z)|=\left|\frac{1}{2\pi}\int \frac{Re^{iz}-z}{Re^{iz}-z}\operatorname{Re}f(Re^{iz})dt-\ln B_n(R,f,z)\right|$$

$$= \left| \frac{1}{2\pi} \int_{0}^{2\pi} \frac{Re^{it} - z}{Re^{it} - z} \operatorname{Re} f(Re^{it}) dt - \sum_{n=1}^{\infty} \frac{(|\Gamma_{n}| - R)(R|\Gamma_{n}| - \Gamma_{n}z)}{|\Gamma_{n}|(R^{n} - \Gamma_{n}z)} \right|$$

$$-\frac{2}{R} \sum_{k=1}^{\infty} \frac{(|-A|^2 - R^2)}{|R^2|}$$

Оценим сначала последнюю сумму

$$\frac{2}{R} \sum_{k=1}^{n} \frac{(|\zeta_{k}|^{2} - R)^{2}}{|R^{2} - \zeta_{k}z|^{2}} = \frac{1}{n} \sum_{k=1}^{n} \frac{|d\zeta_{k}|}{|R^{2} - \zeta_{k}z|^{2}}$$

$$= \frac{1}{n} \sum_{k=1}^{n} \frac{|\zeta_{k}|^{2} - |\zeta_{k}z|^{2}}{|\zeta_{k}|^{2} - |\zeta_{k}z|^{2}} = \frac{1}{n(R - R_{k})}$$

Далее

Используя эту лемму и метод Вольфа (4), может быть доказана Теорема I Пусть $f \in A(D_R)$, R > 1, |f(z)| < 1 при = D Тогди f представляется в D в виде

$$f(z) = \exp(w)z^{n}B(z) \cdot \prod_{k=1}^{n} \frac{R_{k}(z-z)}{|z_{k}|}$$
 (2)

гое |m| = 0, B(z) — конечное произведение Бляшке, соответствующее нулям f(z) в D, а точки — и числа R_h удовлетворяют неривенствам

$$1 < || < R_k, R_k - || < \exp(-ck^{1-\epsilon});$$

c>0 и не зависит от k, а ϵ — произвольное положительное число Замечание. В работе Т. А. Леонтьевой (1) показано, что в условнях теоремы 1 для рядов вида $\sum A_k(z_k-z)^{-1}$ имеет место более точная оценка: $|A_k| < \exp(-ck^{1-\epsilon})$, $\epsilon>0$. В этой же работе отмечено, что из одного результата работы А. А. Гончара (b) следует, что A_k не могут быть выбраны так, чтобы $|A_k| < \exp(-ck)$. Применяя этот результат к логарифинческой производной функции вида (b), получаем, что $f \in A(D_R)$, $f \in A(D_R)$, $f \in A(D_R)$. Пусть $f \in A(D_R)$ в виде (b) так, чтобы $f \in A(D_R)$ не может быть представлена в $f \in A(D_R)$ в виде (b) так, чтобы $f \in A(D_R)$ не может быть представлена в $f \in A($

помму I и теорему С. Б. Стечкния о приближении полиномами, могут быть доказаны следующие теоремы:

Теоремя 2. Пусть (A. Если IIII () In $\frac{1}{a} = 0$, то представляется в 1) в вире

$$f(z) = \sum_{k=1}^{\infty} \ln \frac{R(z_k - z_k)}{R_k^2 - \overline{z_k}} \quad i \operatorname{Im} f(0), \tag{3}$$

200 [.4]>1, RA>1.

$$|R_k - |\Gamma_k| < C_m(f) \cdot \frac{\omega_m \left(f, \frac{1}{k}\right)}{k}. \tag{4}$$

Наметим схему доказательства. Можно считать, что $\lim f(0) = 0$, $\mathbf{w}_{n}(f, 1) \leq 1$. Тогда из (°) следует, что найдутся полиномы $P_{2^n}(z)$ степени 2^n такие, что при

$$|f(z)-P_{2}n(z)|<2L_{2}m_{2}(f,2^{-n}),$$

где $\lim P_{\mathbb{R}^n}(0)=0$, L_m — целое и зависит только от m. Положим $R_n=1-2^{-n}$, n=0, 1, 2 Тогда из неравенства Бериштейна (см. (10). втр. 101) и леммы 1, беря $j_0=\left\lfloor\frac{130\pi L_m(\mu+\mu^2+1)}{\omega_m(f,1)}\right\rfloor$ получаем, что при I=0

$$|P_{s}(z) - \ln B_{l_{0}}(R_{0}, P_{1}, z)| < 13 L_{min}(f, 1).$$

Положим $f_0(z) = P_0(z)$, в при n = 1

$$f_n(z) = \sum_{h=0}^{n-1} \ln B_{J_h}(R_h, f_h, z)$$

и предположим, что при п 1

$$|f_n(z)| < 13 I_{min}(f, 2^{-(n-1)}), z \in D_{R_n}.$$
 (5)

b читывая (5), применяя лемму I к $f_n(z)$ и кругу D_{R_n} и беря $f_n = L_m 2^{m+20} (R_n + R_{n+1})^{-1}$, из неравенства Бериштейна получаем, что при $= (D_{R_{n+1}})$

$$|P_{2^{n+1}}(z) - \sum_{k=0}^{n} \ln B_{I_k}(R_k, f_k, z)| < 13L_m \omega_m(f, 2^{-n}).$$

Продолжая этот процесс и учитывая выбор f_n и условие $\lim \omega_m(f,\delta)$ -

 $\ln \frac{1}{\delta} = 0$, получаем для f представление (4) из нерявенства (5).

Из теоремы 2 может быть получено

Следствие 1. Пусть feA. Если 0<|f(e")|<1. | _____ dt <1.

то f в D предстивляется в виде (2), причем

$$R_h - |\Gamma_h| < C_m(f) \cdot \frac{\omega_m(f, \frac{1}{k})}{k}$$

Аналогично теореме 2 может быть доказана

Теорема 3. Пусть feA. Тогда f представляется в D в виде

$$f(z) = \sum_{k=1}^{\infty} \left(\frac{1}{z_k - z} - \frac{1}{z_k - z} \right), |z_k| > 1, |z_k| > 1, |z_k| = \frac{R_k}{z_k}$$

так, что имеют место неравенства

$$\left|f(z) - \sum_{k=1}^{n} \left(\frac{1}{z_{k}^{+} - z} - \frac{1}{z_{k} - z}\right)\right| < C_{1}(f) \cdot \omega_{1}\left(f, \frac{1}{n}\right), \quad z \in \overline{D};$$

$$\left|\left(\frac{1}{z_{k}^{+} - z_{k}}\right)\right| < C_{2}(f) \cdot \frac{1}{k^{2}}$$

В следствии 1 для равномерной сходимости бесконечного произведения в представлении (2) требовалось, чтобы $0 |f(e^n)| < 1$. Если отказаться от этих условий, то может быть доказана

Теорема 4. Пусть (г) аналитична в D, 0 < |f(z)| < 1, $z \in D$ и $f(e^{i})$ радиальные предельные значения f. Тогда f представляется в D в виде (1) тогда и только тогда, когда функция $|f(e^{i})|$ полунепрерывна снизу, $|f(e^{i})| < 1$ и

$$\lim_{t\to\infty} \left| \frac{f(re^{it})}{f(re^{it})} \right| dt = 0.$$

Из теоремы 4 может быть получено

Следствие 2. Для того, чтобы функция ограниченного виои представлялась в виде

$$f(z) = \exp(B_1)z^n \cdot \frac{B_1(z) \cdot \Pi_1(z)}{B_2(z) \cdot \Pi_2(z)},$$
 (6)

гое Im_1 0, B(z) — произведения Бляшке, соответствующие нулям и полюсам f, а $\Pi_1(z)$, $\Pi(z) = n$ произведения вида (1), необходимо и достаточно, чтобы

$$\lim_{r\to 1}\int_{0}^{2r}\ln t\left|\frac{f(re^{it})}{f(re^{it})}\right|dt=0.$$

Как мы нидим из теоремы 4 и следствия 2, не любую функцию ограниченного вида можно представить в D в виде (6). Однако используя факторы несколько иного вида, может быть доказана

Теорема 5. Пусть f аналитична g 1) и 0 |f(z)| < 1 при $z \in D$. Тогда f представляется g 1) g виде

$$f(z) = \exp\left(b\frac{1+z}{1-z}\right) \cdot \prod_{k=1}^{\infty} \left(\frac{z-a_k}{z-b_k}\right) \cdot \exp\left(\frac{a_k-b_k}{z-b_k}\right),$$

ede b>0, a_k , b_k , $\overline{\in D}$, $\sum_{k=1}^{\infty}|a_k-b_k|^2<+\infty$.

В заключение автор благодарит Н. У. Аракеляна за постановку задачи и руководство работой.

Институт математики Акалемии наук Армянской ССР

n. up. uybshusuv

հրատինի տիպի անվերջ արտադրյալների տեսքով չրջանում անալիտիկ ֆունկցիաների ներկայացման մասին

(|f(z)| < 1) in the second second

$$\prod \frac{R_k(-z)}{R_k - k^2}, (|-k| > R)$$

անվերջ արտագրլալի տեսքով, որտեղ $R_k >_{[-k]}$, $\sum_{k=1}^{n} R_k - |-k| < -$ անհրաժեշտ է և րավարար, որպեսզի |f| — հզրալին արժեքները և կիստանընդտատ ներքերց և

$$\lim_{r,q\to 1} \int_{0}^{2\pi} \ln^{+} \left| \frac{f(re^{tt})}{f(re^{tt})} \right| dt = 0.$$

չ ունալում անվերը արտագրիալների տեսքով. օվտավորիկում ավելի և հարկանական արտագրին և հարկանական երակաների կարելի

ЛИТГРАТУРА — ЪГЦЧЦЪПЪРВОБЪ

² J. Schur, J. Reine und angew Math, vol. 147 (1916), vol. 148 (1916) ² L. Carleson, Ann. of Math, vol. 76 (1962). ³ M M Джрбашян, Mat. c6., т. 79 (121). M 4 (1963). ⁴ J Wolff, C. г. Acad. Nie, vol. 173 (1921). ³ A. Danioy, Bull. soc math. France, vol. 52 (1924) ⁴ L. Duren. Theory of H^P spaces, Academic Press.New-York, 1970. ¹ T. A. Леонтьева, Мат. заметки, т. 4, № 2 (1968). ⁸ A. A. Гончар, Мат. с6., 76 (118), № 1 (1968) ⁹ C. Ы. Стечкин. "Известия АН СССР", сер. мат. т. 15. № 3 (1950) ¹⁰ Дж. Уолш, Интерполяция и апроксимации рациональными функциими и комплексной области, И.Т. М., 1961.

81