LXXI

1980

2

УДК 5175

MATEMATHKA

С. А. Григории

Об особенностях обобщенных аналитических функций

(Представлено чя-корр. АН Арминской ССР Н У. Аракеляном 26/111 1980)

 0° . Пусть Γ —подгруппа аддитивной группы нещественных чисел, снабженная дискретной топологией. $\Gamma_{+} = |x \in \Gamma; x = 0\}$ —подполугруппа группы Γ , а G—группа характеров группы Γ . По теореме двойственности Понтрягина G является компактной абелевой группой.

Рассмотрим на локально компактном пространстве \mathfrak{Q}_{Γ} , полученном из декаргова произведения $G \times [0,\infty)$ путем отождествления в точку слоя $G \times \{0\}$, систему $[\omega^{\tau}]_{\tau \in \Gamma_{+}}$ непрерывных функций на заданных следующим образом: $\omega^{\tau}(\mathfrak{a} \times r) = \mathfrak{a}(x) r^{\tau}$.

Комплексиозначную функцию f, определенную на открытом множестве $D \subset \Omega_1$, называют обобщенно-аналитической, или просто аналитической, если для каждой точки множества D существует такая окрестность U = D, что функция f аппроксимнруется на U линейными комбинациями над C^1 функций из $\{\omega^x\}_{x\in\Gamma+1}$.

Линейные комбинации функций из {w1} лег+ булем называть по-

липомами.

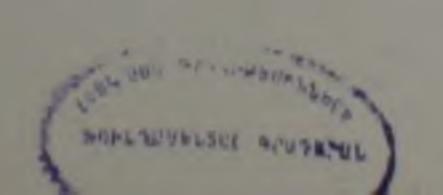
В случае, когда Г изоморфиа группе целых чисел, пространство Ω_1 изоморфио комплексной плоскости, и обобщенная аналитичность и этом случае совпадает с классической аналитичностью.

Множество $D \subset \Omega_1$ назовем ограниченным, если D—компакт. В теории аналитических функции одной комплексной переменной хорошо известны теорема Римана о продолжении и теорема Пикара о поведении функции вблизи существенной особой точки.

В данной заметке формулируются результаты, являющиеся ана-

логами вышеуказапных теорем.

1. Каждая аналитическая функция, заданная на связном открытом множестве D комплексной плоскости C^1 , удовлетворяет условню единственности, т. е. если f равно нулю на некотором открытом подмножестве множестия D, то f O на D.



Естественно поставить вопрос: верно ли аналогичное утверждение в пространстве \mathfrak{Q}_Γ в случае, когда Γ не изоморфиа группе целых чисел. На этот вопрос отвечает.

Теоремя 1. Пусть D-ограниченное открытое в Ω_1 мно-мество. Для того чтобы каждая аналитическан на D функция удовлетворяла условию единственности, необходимо, чтобы точка $a = G \times |0| \in \Omega_1$ принадлежала множеству

$$\hat{D} = |u(\Omega_{\Gamma}, |p(u)| \leq \sup_{D} |p|$$
 для любого полинома p).

Существуют примеры, показывающие, что приведенное в теореме 1 условие не является достаточным.

- 2 . Пространство \mathfrak{Q}_Γ можно представить в виде $\mathfrak{Q}_\Gamma = (\ \ \) \mathfrak{Q}_i) \cup [\ \ \ \ \ \]$ (см. лемму 1 из (¹)), где $\mathfrak{q} = G \times \{0\}$, а множества \mathfrak{Q}_i , $f \in I$, поварно не пересекаются, связны, всюду плотны в \mathfrak{Q}_Γ и удовлетворяют следующим условиям:
 - а) для любых 1,131 существует об такое, что

$$\Omega_i = 2\Omega_j$$
 $(2 \cdot (\beta \times r)) = (2\beta) \times r;$

б) для любого $i \in I$ существует такое взаимно-однозначное непрерывное отображение Ψ_I из комплексной плоскости ${\bf C}^1$ на ${\bf Q}_I$, что для каждого $\omega^x \in [\omega^x]_{i=1}$ выполняется равенство

$$w_0^t \Psi_l(z) = \exp(-x \cdot z).$$

Из условий а) и б) следует утверждение, аналогичное теореме Лиувиля (см. (2)); если обобщенная аналитическая функция, определения на всем пространстве $\Omega_{\rm F}$, ограничена, то она постояния.

Определенне, Пусть D—открытое множество в \mathfrak{Q}_{Γ} . Подмножество E^-D назовем тонким, если для каждой точки из D существует такая окрестность U^-D и такая аналитическая функция f на U, что:

- а) функцин f обращиется в нуль на множестве $E \cap U$;
- 6) для каждого if I множество $2_I \cap E$ не более чем счетно.

Примером тонкого множества является множество нулей аналитической функции, определенной на всем пространстве \mathfrak{Q}_{Γ} . С другой стороны, из теоремы 1 следует, что нули не каждой аналитической функции образуют тонкое множество. Вообще говоря, тонкое множество не является одногочечным. Единственный пример одноточечного тонкого множества— $\{z\}$, где $z=G\times\{0\}$ $\in \mathfrak{Q}_{\Gamma}$.

Пусть D—открытое множество в Q_Γ и E—подмножество в D. Функцию f, определенную на множестве D E, назовем локально ограниченной, если для каждой точки из D существует такая окрестность $U \subset D$, что функция f ограничена на $U \cap \{D, E\}$.

Теоремя 2. Пусть E-тонкое подмножество открытого множества D в Ω_Γ и f-аналитическая функция на D E, локально ограниченная на D. Тогда существует единственная функция \mathcal{L} , аналитическая на D и совпадающая с f на $D \setminus E$.

Следствие. Пусть E- тонкое подмножество связного открытого множества D в Ω_{Γ} . Тогда $D\setminus E$ связно.

Пусть E—тонкое множество в D, а Y—тякое подмножество в E, что каково бы ни было открытое множество $U \subset D$, множество Y = U не является тонким в U.

Теорема 3. Пусть f—аналитическая функция на D Y. Toz- да существует единственная аналитическая функция g на D |z|, совпадающая c f на $D \setminus E$.

Следствие. Пусть f—аналитическая функция, заданная на всем пространстве D, кроме, быть может, некоторого конечного числа точек. Тогда функция f однозначно продолжается до аналитической функции, определенной на всем D {0}.

3. Пусть D-открытое множество в \mathfrak{Q}_Γ и E-тонкое подмножество в D.

Леммя 4. Пусть f—аналитическая функция на $D \setminus E$. Тогда поведение функции f в окрестности каждой точки $e \in E$ может быть только следующим:

- a) f(e) стремится к конечному пределу для любого e, e, e. (1) E,
 - 6) $|f(e_i)|$ стремится к ∞ для любого $e_i \rightarrow e_i$ $e \in D^*$ E_i

в) в каждой окрестности точки е Е функция f принимает все значения, сколь угодно близкие каждому комплексному числу.

Точку множества E, в окрестности которой функция f удовлетворяет условию б), будем называть полюсом, а условию в)—существенно особой точкой.

Теорема 5. Пусть $s \in D$ и f—аналитическая функция на $D \setminus \{s\}$. Если точка s является полюсом для f, то существует единственная функция $w \in \{w^x\}_{x \in \Gamma}$, такая, что f/w—-аналитическая функция на D.

Теорема 6. В каждой окрестности существенно особой точки аналитическая функция принимает все значения за исключением, быть может, одного.

Вычислительный центр

Госплана Армянской ССР

U. U. SPPSAPSUL

Հոգվածում ուսումնասիրվում են ընդհանրացված անալիտիկ ֆունկցիա. Ների հատկությունները։ Մասնավորապես, ստացված են Ոիմանի և Պիկարի Թեորեմների անալոգները։

ЛИТЕРАТУРА — ЭГЦЧЦЪПЬРЗПЬЪ

¹ С. А. Григорян, ДАН АрмССР, т 68, № 3 (1979). ² Т. В Тонев, Д. К Станков. Дока Б. А. Н., № 1, 1980.