LXIX 1979

УДК 523.858

АСТРОФИЗИКА

Г. Т. Петров

Содержание ионов и химический состав в ядрах сейфертовских галактик типа I и радиогалактик с широкими линиями

(Представлено академиком В. А. Амбарцумяном 9/1 1979)

Химический состав излучающего газа можно определить, эная относительные интенсивности эмиссионных линий, электронную плотность и электронную температуру. Определение относительного содержания водорода и гелия возможно по рекомбинационным линиям 6563 Н .. 4861 Н в, 5876 Hel, 4686 Hell и др. Для всех элементов тяжелее гелия использование разрешенных линий при определении химического состава практически невозможно, так как для этого необходимо знать поле радиации в любой точке излучающего объема газа. На практике содержание тяжелых элементов определяется по запрещенным линиям. При этом явления стратификации во внимание не принимаются. Обзоры по определению химического состава приведены в (1-3).

На основе относительных интенсивностей линий, приведенных в (⁴.⁵), нами определено относительное содержание ионов О⁰, О+, О++, N+, S+, He+, He+ и элементов He, N, О и S по отношению к H. Относительные интенсивности линий были коррегированы за межзвездное поглощение по формуле:

$$\lg I_0 = \lg I_{\text{Ma6a.}} + Cf(\lambda).$$

Функция f(t), представляющая закон межзвездного поглощения света Унтфорда, бралась из (°). Она незначительно отличается от табуляции, приведенной в (¹). Поглощение C определяли по бальмеровскому декременту для $T_c = 10^4$ К и $n_c = 10^4$ см 3 (зависимость от n_c слабая) согласно (¹).

Для определения содержания ионов применяли методику, предложенную в (в) и (р). Электронную температуру определяли по линиям [О III] 1 1 4363, 4959 и 5007. Уравнение, связывающее относительные интенсивности исбулярных и авроральных линий, решали графическим

методом при помощи данных, приведенных в (10). Поскольку в (11) для 36 сейфертовских галактик (СГ) типа 1 и 5 радиогалактик с широкими линиями (РГШЛ) получено среднее значение $\log n_e = 6.7$, то уравнение решали при $n_e = 6.5$. Соответствующие средние значения логарифмов электронных температур и их дисперсии для сейфертовских галактик типа I равны 3.96 ± 0.13 , а для радиогалактик с широкими линиями— 3.94 ± 0.09 .

Остерброк (4) указывает, что $T_e = 10-15000^\circ$ К для $n_e = 10^\circ -10^\circ$ см $^{-3}$.

В табл. 1 и 2 для 36 сейфертовских галактик и 15 радногалактик с широкими линиями соответственно представлены логарифмы относительных чисел ионов и атомов в галактиках, перечисленных в первых столбцах таблиц, в предположении, что число водородных атомов равно 10^{12} .

Таблица 1 Относительное содержание ионов в ядрах СГ типа I и РГШЛ

Объ-	Oo	0+	0 +	N+	S+	He+	He++	He	N	0	S
Mpk 10	6,35	6.60	17,46	6.22	5.48		10.64		7.14	7.55	6,40
40	6.98	7,30	7.34	6.30	5.58	11.30		11.34	6.63	7.71	5.91
69		7.04	7.13	6.85	5.82	11.18	10.62	11.28	7.20	7,39	5,36
79	6.32	6.62	7.10	6.14	5.10	11.11	10.15	11.15	6.74	7.28	6.00
106		6.43	6.96	5.95		10.85	_	11,00	6.59	7.11	
110	6.43	7,94	7,22	5.96	5.51	10.78	10.30	10.91	6.03	8.02	5.58
124		7,33	7.29			10.72	10.41			7,61	
141		6,48	7.08	6.74	5.78	10.79		10.95	7.44	7.18	6.47
142		6,43	6.90	5.70	4.76	11.27	10.57	11,34	7.30	7.02	6.36
236	7,60	6,68	7.15	6.00	5.65	11.15	10.58	11.26	6.59	7.77	6.24
279	6,55	6.72	6.80	6.22	5.38	11.02	10.20	11.08	6.56	7.18	5.72
290	6,42	6.38	7.29	5.83	5.20	11.08	10.20	11.13	6.78	7.39	6.16
291	6.97	7.44	7.47	7.03	6.10	11.04	10.96	11.30	7.35	7.82	6,41
304	5,48	5.79	6.32	5.59	4.71		10.18		6.21	6.48	5.33
335		5,59	6.86				10.52			6.89	
352		5,43	6,54				10.64		g 00	6.58	0 55
358	6.79	6,59	7.13	6.37	5,90	10.84	10.77		7.03	7,37	6,55
374			7.12	5.59	5.22	11.21	10.46	11,28			
376			6.64	6.30	4.87	10.98			7.55	7 47	7 26
382		6,51	7.42	6,59	6.40	11.08	10.81	11,20	7:55	7.47	7.36
478		6.78	6.88			10.72		10 07		7.13	
486			6.82			10.87	10.30	10.97			
504			6.90			11.10	10.62	11.23	C 00	2 55	6 11
506	6.66	6,91	7.36	6.43	5.67	11.23	10.48	11.30	6.90	7.55	6.14
509		6.17	6,88			11.15	10.46	11.23	7 64	6.96	
541		6.19	6.86	6.88			10.76	11.50	7.64	6.94 7.55	6.08
590	7.05	6.90	7.22	6.53	5.58	11.04		11 20	7.02	7.32	6.79
Mph 618	6.43	6.65	7.13	6.93	6.18		10.62		7.54		6.58
NGC 3227		6.18	7,60	6.07	5.14	11,26			7.51	7.63	0100
NGC 3516		6.97	7.21			11.15		11.20	6 64	7.41	5,90
NGC 5548		6,83	7.38	5.97	5.23	10.62		10.64	6.64	7,40	0130
NGC 7469		6.96	7.21				10.40	11.16		7140	
Zw 1	_		7.12			10.95		11 22	7.54	7.71	6.70
I Zw 1		6.93	7.58	6.80	5,96	11,08	10.66		7,54	7.09	3770
1 Zw 136	_	6.24	7.03				10.15	10.98	6.44	7.17	5.95
11 Zw 2		6.41	7.00	1 5.76	5.26	110.95	9,04	10136	0144	1111	0.00

В табл. 3 приведены средние по полученным нами результатам данные о сейфертовских галактиках типа I и радиогалактиках, а также некоторые данные, относящиеся к среднему химическому составу планетарных туманностей, туманности Ориона и звезд по результатам, опубликованным, соответственно, в (12-14).

Содержание нонов и атомов для РГЦІЛ .

					1						
Объект	N-	S+	Oo	0+	0++	He+	lle++	He	N	0	S
3C 120	6,14	6,19	6.32	6.56	7.43	11.08	10.36	11.50	7.07	7.52	7.1
227	7,96	7,02	8.63	6.83	7.40	10.72	10.40	10.90	8.64	8.66	7.7
234	6.2	5,82	6.02	7.88	8.46	10.48	10.40	10.78	7.20	8,60	6.50
287 - 1	6.43	5.79	6.40	9.14	7.93				6.45	9.17	5.8
332	6.56	5,64	6.29	9.04	8.44		10.66		6,66	9.14	5.74
381	7.56	6,74	8.04	8.52	8.76		10.64		8.00	9.01	7 - 18
382	4.63	4.90	6.08	6.35	6.78	10.91	9,60	10,95	5.30	6.95	5.40
3.10.3	5.85	5.05	6.69	6.97	7,46	10.9K	9.30	11.00	6.46	7.63	5.66
3C 345	6.00	5.36	6,77	6,36	7.90	10.57			7.56	7.94	6.9
0353 027					7.77		9.95				
1417-19	6.68	5,65	5.75	6.90	7,81	10.48	9.70	10.45	7.64	7.86	6.51
2349 — 01	6.28	5.27	4.78	6.76	7,07	10.69			6.76	7.26	5.75
4C 29.06	6.61	5.81	6.17	7.30	7.72	10.11	9.66	10.26	7.18	7.87	6,38
4C 35-37				6.92	7,28					7.43	
IV Zw 29	6.69	5.74	6.05	7.34	7.61				7.15	7,81	6,20

Таблица 3 Среднее содержание понов и атомов для некоторых объектов

Объекты	N+	S+	Oo	0+	++0	He+	He++	He	N	0	S	n
СГ типа I РГШЛ Орион Планетарные туманности Звезды	6.27 6.47 7.52 7.05	5.51 5.77 5.98 5.90	6.57	7.35	7.72 8.24	10.67	10.34	10.85	7.08 7.76 8.18	8.06 8.75 8.76	6.39 7.41	36 15 12 13

Сравнение полученных нами результатов с аналогичными величинами для других объектов показывает, что:

1. Относительное содержание гелия в сейфертовских галактиках типа 1 в среднем в полтора раза превосходит его содержание в планетарных туманностях или туманности Орнона; в этих галактиках относительное содержание близко к звездному.

Относительное содержание гелия в радиогалактиках с широкими лишиями примерно в полтора раза меньше, чем в планетарных туманностях или туманности Ориона.

2. По сравнению с туманностью Ориона сейфертовские галактики типа I содержат примерно на порядок меньшие относительные коли-

чества азота и кислорода, а радиогалактики с широкими линиями в пять раз меньшие количества азота и кислорода.

- 3. В среднем по сравнению с сейфертовскими галактиками типа I радногалактики с широкими линиями содержат в два раза меньшее относительное количество гелня, примерно такое же количество азота и в пять раз меньшее количество кислорода. При этом в радногалактиках с широкими линиями относительное содержание ионов О+ на порядок больше, а ионов О++—в четыре—пять раз больше, чем в сейфертовских галактиках типа 1. Это обстоятельство является отражением того факта, что относительные интенсивности линий [О III] и На в радногалактиках с широкими линиями много больше, чем в сейфертовских галактиках типа 1.
- 4. Относительное содержание серы, приводимое нами, является нижней границей, поскольку интенсивности линий [SIII] в (4) и (5) не приведены. Вследствие этого приведенная величина может быть недооценена в несколько раз. С другой стороны, число ионоя S в сейфертовских галактиках типа I, радиогалактиках с широкими линиями, туманности Ориона и планетарных туманностях отличается не больше, чем в три раза, поэтому вероятно, что количество серы у этих объектов отличается не так сильно, как приведенные в таблице значения.
- 5. Различия в химическом составе сейфертовских галактик типа I и радиогалактик с широкими линиями в среднем небольшис, но поскольку температуры в зонах О III для этих объектов практически одинаковы, то вероятно, что выведенные различия в химическом составе реальны.
- В (2) отмечается, что радиогалактики с широкими линиями отличаются от сейфертовских галактик типа I тем, что:
- а) бальмеровский декремент для радиогалактик с широкими линиями очень крут;
 - б) линин Fell в радиогалактиках с широкими линиями слабы;
- в) отношение [O III]/Н больше для радногалактик с широкими линиями.

На основе полученных результатов можно заключить, что одной из возможных причин высокого отношения [О III]/Н, является повышенное содержание кислорода. Чтобы однозначно выяснить, чем вызвано различие в содержании кислорода в объектах обоих типов, необходимы более детальные спектрофотометрические исследования, охватывающие ультрафнолетовую область спектра до примерно 3300 А. В этом случае можно однозначно определить температуры и давления в зонах, излучающих запрещенные линии, а затем и химический состав излучающего газа.

Автор благодарен М. А Аракеляну за ценное обсуждение.

և տիպի Սեյֆեւտի գալակտիկաների և առաքման լայն գծեւով ռադիոգալակտիկաների միջուկների քիմիական բաղադրությունը և իոնների պարունակությունը

1 տիպը 36 Սեյֆերտի գալակտիկաների և 15 առաքման լայն դծերով ռադիոզալակտիկաների համար որոշված են որոշ իռնների և ատոմների հարաբերական քանակությունները և -ում բերված առաքման գծերի հարաթերական ինտենսիվությունների միջոցով։

Նշված օբյեկտներում հելիումի, ազոտի և թթվածնի ատոմների հարաբերական քանակությունները որոշ չափով տարբերվում են այդ նյութերի հարաբերական քանակություններից Օրիոնի միգամածությունում, մոլորակաձև մի-գամածություններում և աստղերում։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՑՈՒՆ

¹ M. Seuton, Rept. Progr. in Phys., 23, 313, 1960. ¹ D. E. Osterbrock, Quatl. J. R. A. S., 11, 199, 1970. ³ D. E. Osterbrock, in Astrophysics of Gaseous Nebulae., 1974. ⁴ D. E. Osterbrock, Ap. J., 215, 735, 1977. ³ S. A. Grandl, D. E. Osterbrock, Ap. J., 220, 783, 1978. ⁴ J. B. Kaler, L. H. Aller, S. J. Czyzak, H. W. Epps, Ap. J. Suppl., 31, 163, 1976. ¹ M. Brocklehurst, M. N. R. A. S., 153, 471, 1971. ⁰ M. Peimbert, Ap. J., 154, 33 1968. ¹ M. Peimbert, Bol. Obs, Ton. y Tac., 6, 97, 1971. ¹⁰ A. A. Боярчук, Р. Е. Гершберг, Н. В. Годовников, В. И. Проник, Известия Крымской астроф. обс., 39, 217, 1969. ¹¹ Г. Т. Петров, Астрофизика, 15, 383, 1979. ¹² M. Peimbert, S. Torres-Peimbert, Ap. J., 168, 413, 1971. ¹³ M. Peimbert, S. Torres-Peimbert, M. N. R. A. S., 179, 217, 1977. ¹⁴ L. H. Aller, S. J. Szizak, 1AU Symp., 34 209, 1968.