3

УДК 517.5

МАТЕМАТИКА

С. А. Григорян

Об алгебрах, порожденных аналитическими по Аренсу—Зингеру функциями

(Представлено чл.-корр. АН Армянской ССР Н. У. Аракеляном 6/11 1979)

Пусть Γ —подгруппа аддитивной группы вещественных чисел, снабженная дискретной топологией, $\Gamma_+ = \{x \in \Gamma; x = 0\}$ —подполугруппа группы Γ , а G—группа характеров к группе Γ . По теореме двойственности Понтрягина G является компактной абелевой группой, и группа характеров к G есть группа Γ .

Рассмотрим на локально компактном пространстве C_0 —полученном из декартова произведения $G \times [0, \infty)$ путем отождествления в точку слоя $G \times [0]$ —систему $\{w^x\}_{x \in \Gamma_+}$ непрерывных функций, заданных следующим образом: $w^x(\alpha \times r) = \alpha(x) \cdot r^x$, $\alpha \times r \in C_0$, $x \in \Gamma_+$. Очевидно, $w^x(w^x) = w^{x_1} w^{x_2} = w^{x_1 + x_2}$, $w^x(w^x) \in \{w^x\}_{x \in \Gamma_+}$

Определение. Комплекснозначную функцию, определенную на открытом множестве $D \subseteq C_0$, будем называть аналитической по Аренсу—Зингеру или просто аналитической, если для каждой точки множества существует такая окрестность $U \subseteq D$ что функция f аппроксимируется на U линейными комбинациями над C функций из $\{w^\mu\}_{\mu=1}^n$.

Линейные комбинации над C функций из $\{w^x\}_{x\in\Gamma_+}$ будем называть полиномами, а отношение двух полиномов—рациональной функцией.

В зависимости от выбора Г получаем различные пространства; в частности, когда Г изоморфиа группе целых чисел, пространство Са изоморфио комплексной плоскости и аналитичность по Аренсу—Зингеру в этом случае совпадает с обычной аналитичностью.

В дальнейшем для компакта K = C через P(K) будем обозначать равномерную алгебру на K, порожденную полиномами, а через P(K)—равномерную алгебру на K, порожденную такими рациональ-

Пространство Со и соответствующие определения были независимо от автора въедены Т. В. Тоневым.

ными функциями f=p/q, что множество нулей полинома q лежит вне компакта K.

В данной заметке формулируются результаты, характеризующие свойства алгебр P(K) и R(K) в случае, когда группа Γ есть группа рациональных чисел.

1 , Пусть $u \in C_0$, $u = \alpha \times r$. Для любого $\beta \in C$ определим произнедение $\beta \cdot u = v \in C_0$, где $v = (\beta \cdot \alpha) \times r$.

Лемма 1. Пространство Со можно представить в виде

$$C_0=(UC_1)U\{0\}.$$

где $0 = G \times \{0\}$, а множества C_1 , $i \in I$ попарно не пересекаются, связны, всюду плотны в C_0 и удовлетворяют следующим условиям:

а) для любых i, j(l) существует a(G) такое, что $C_1=aC_1$;

б) для любого $\{ \{ \} \} \}_{i \in I}$ пространства $\{ \{ \} \}_{i \in I}$ выполняется равенство: для $\{ \{ \} \}_{i \in I}$ выполняется равенство: для $\{ \{ \} \}_{i \in I}$ выполняется равенство: для $\{ \{ \} \}_{i \in I}$

Пусть $W(0 \in W)$ —полиномнально выпуклый компакт в C. Для некоторого фиксированного $x_0 \in \Gamma_+$ рассмотрим компакты: $K_0 = \{u \in C_G; w^x_0(u) \in W\}$ и $G_0 = \{z \in G, z(x_0) = 1\}$.

Лемма 2. Алгебра $P(K_0)$ изометрически изоморфна равномерной алгебре на декартовом произведении $W \times G_0$, порожденной функциями вида $f \in G(G_0)$ а $g \in C(G_0)$ —алгебре всех непрерывных комплекснозначных функций на G_0 .

Для компякта $K \subseteq C_Q$ пусть

 $\hat{K}=|u\in C_0; |p(u)|\leqslant \sup |p|$ для любого полинома p

 $K^0 = \{u \in C_0; |f(u)| \leq \sup |f|$ для любой рациональной функции из $R(K)\}.$

Множество K будем называть полиномнально выпуклой оболочкой множества K, а K^0 будем называть рационально выпуклой оболочкой. Отметим, что каждый компакт K в C_0 является рационально выпуклым, хотя и не всегда полиномнально выпуклым.

Следующая лемма устанавливает критерий полиномиальной

выпуклости компакта К.

Лемма 3. Для того, чтобы компакт $K \subseteq C_0$ был полиномиально выпуклым, необходимо и достаточно, чтобы для любого $i \in I$ множество $K_i = K \cap C_i$ (см. лемму 1) имело бы связное в C_i дополнение.

Из определения полиномиальной выпуклости следует, что лапространство максимальных идеалов алгебры P(K) есть в точности K.

Воспользовавшись леммами 1—3, можно доказать следующие теоремы.

Теорема 1. Пусть K—компакт в C_a . Граница Шилова плебры P(K) совпадает с множеством $U\partial K_i$, где ∂K_i —топологическая

в C_I граница множества $\hat{K_I} = \hat{K_I} C_I$.

Теорема 2. Для алгебры R(K) справедливы следующи условия:

а) пространство максимальных идеалов алгебры R(K) есть K;

6) граница Шилова алгебры R(K) совпадает с $\bigcup \partial K_i$, где ∂K_i —топологическая граница множества $K = K \cap C$

Отметим, что из теорем 1 и 2 и леммы 2 следует, что граница Шилова как для алгебры R(K), так и для алгебры P(K) не обязана совпасть с топологической границей множества K.

Пусть H(K)—алгебра всех функций, аналитических в окрестности K.

Теорема 3. Любую функцию $f \in H(K)$ равномерно на K можно приблизить функциями из R(K).

2, Пусть A—равномерная алгебра на некотором компакте X. Говорят, что A является локально-аппроксимативной алгеброй, если любая непрерывная на X функция, локально аппроксимируемая функциями из A, принадлежит алгебре $A(^1)$.

Лемма 4. Для любого компакта $K \subseteq C_G$ алгебра R(K) является локально аппроксимативной. Алгебр P(K) локально аппроксимативна тогда и только тогда, когда компакт K полиномиально выпукл.

Теорема 4. Пусть K-компакт в C_G . Для того, чтобы P(K) совпало бы с C(K), необходимо и достаточно, чтобы для любого $i \in I$, $Int K_I = \emptyset$ в C_I и дополнение к $K_I = K \cap C_I$ было бы связно в C_J .

Теорема 5. Пусть K— такой компакт в C_0 , что каждая точка из K является точкой пика для алгебры R(K). Тогда R(K)=C(K).

Доказательство теорем 4 и 5 проводится с помощью лемм 2 и 3 и аналогичных результатов для равномерных алгебр P(K) и R(K) в случае, когда K—плоский компакт.

Вычислительный центр Госплана Армянской ССР

Ս. Ա. ԳՐԻԳՈՐՅԱՆ

Արսեն—Զինգերի իմաստով անալիտիկ փունկցիաներով ծնված հանրանայիվների մասին

 անընդհատ ֆունկցիոնալ Co լոկալ կոմպակա տարածութլան վրա։ Արտնընդհատ ֆունկցիաններ գծալին կոմպետ հնարագմություններ կոչվում են բազմանդամներ, իսկ բաղմանարար՝ R(K)-ով նշանակվում է բազմանդամներով (նաև ապատասետարար՝ K(K)-ով) նշանակվում է բազմանդամներով (նաև ապատասետարար՝ K կոմպակտի վրա անընդհատ ռացիոնալ ֆունկցիաններով) ծնված հավասարայափ հանրահաշիվը։ Ստացված են արդյունըներ, որոնը նկարագրում են P(K) և R(K) հանրահաշիվների մաքսիմալ իդեալների տարածությունները և Շիլովի եզրերը։

Դանված ևն աներաժեշտ և բավարար պալմաններ P(K) = C(K) հավա-

umpne flut Sudmps

ЛИТЕРАТУРА-ЧСИЧИВПЕРЗПЕВ

1 Т. Гамелич. Равномерные аллебря. М., "Мир", 1973.