УДК 536.24

ПРИКЛАДНАЯ МАТЕМАТИКА

Р. С. Минасян

О смешанной граничной задаче теплопроводности для шара

(Представлено академиком АН Армянской ССР М. М. Джрбашяном 2/VI 1978)

В работах (1-4) получены решения смешанных краевых задач теплопроводности для бесконечного цилиндра и полуплоскости. В настоящей работе приводится решение задачи стационарного осесимметричного течения тепла в шаре, на поверхности которого происходит теплообмен с окружающей средой, когда коэффициент теплообмена является функцией угла в. Предполагаем, что внутри шара имеются источники тепла. Функция распределения температуры в шаре удовлетворяет уравнению (5)

$$\frac{\partial^2 U}{\partial r^2} + \frac{2}{r} \frac{\partial U}{\partial r} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial U}{\partial \theta} \right) = -\frac{1}{r} w(r, \theta) \tag{1}$$

и граничному условию

$$\frac{\partial U}{\partial r}\Big|_{r=R} = h(\theta)[S(\theta) - U(R,\theta)]. \tag{2}$$

Здесь ℓ — коэффициент теплопроводности шара, $w(r, \theta)$ — интенсивность тепловыделения внутри шара, $h(\theta)$ и $S(\theta)$ — соответственно коэффициент теплообмена и температура окружающей среды. Относительно функций $h(\theta)$, $S(\theta)$ и $w(r, \theta)$ предполагаем, что они имеют ограниченную вариацию и что коэффициент теплообмена $h(\theta)$ неотрицателен. Преобразованием (5)

$$\cos\theta = 1, \ U(r,\theta) = r \ TU^*(r,1) \tag{3}$$

задача сводится к решению дифференциального уравнения

$$\frac{\partial^{2} U^{*}}{\partial r^{2}} + \frac{1}{r} \frac{\partial U^{*}}{\partial r} + \frac{1}{r^{2}} \left[(1-\frac{1}{r}) \frac{\partial^{2} U}{\partial r^{2}} - 2 \frac{\partial U^{*}}{\partial r^{2}} - \frac{1}{4} U^{*} \right] = -\frac{1}{\kappa} r_{2}^{2} w^{*}(r, \zeta) \tag{4}$$

с граничным условием

$$\frac{\partial U^{\circ}}{\partial r}\Big|_{r=R} - \frac{1}{2R} U^{\circ}(R, z) = h^{\circ}(z) [R_{z}^{1} S^{\circ}(z) - U^{\circ}(R, z)]. \tag{5}$$

Разложим функцию $U^*(r,1)$ в ряд по полиномам Лежандра

$$U^*(r,1) = \sum_{k=0}^{\infty} U_k(r) P_k(1), \tag{6}$$

где $P_k(\cdot)$ — полиномы Лежандра, удовлетворяющие уравнению ($^{\mathfrak a}$)

$$(1 - \zeta^2) P_k^*(\zeta) - 2\zeta P_k^*(\zeta) + k(k+1) P_k(\zeta) = 0, \tag{7}$$

$$U_k(r) = \frac{1}{D_k} \int_{-1}^{1} U^*(r, 1) P_k(1) d^*, D_k = \frac{2}{2k+1}$$
. Умножая уравнение (4) на

 $\frac{1}{D_k} P_k(\zeta) d\zeta$, интегрируя по ζ от -1 до +1, и учитывая (7), для определения $U_k(r)$ получаем уравнение

$$U_k(r) + \frac{1}{r} U_k(r) - \frac{1}{r^2} \left(k + \frac{1}{2} \right)^2 U_k(r) = -\frac{1}{l} w_k(r), \tag{8}$$

ограниченное решение которого имеет вид:

$$U_{k}(r) = \left(\frac{r}{R}\right)^{k+\frac{1}{2}} \left[C_{k} + \frac{1}{\lambda(2k+1)} \int_{r}^{R} w_{k}(r_{1}) G_{k}(r_{1}) r_{1} dr_{1} \right] +$$

$$+\frac{G_{k}(r)}{\lambda(2k+1)}R^{-k-\frac{1}{2}}\int_{0}^{\infty}w_{k}(r_{1})r_{1}^{k+\frac{3}{2}}dr_{1}.$$
(9)

Здесь

$$w_{k}(r) = \frac{1}{D_{k}} r^{\frac{1}{2}} \int_{-1}^{1} w^{s}(r, \cdot) P_{k}(\cdot) d\cdot G_{k}(r) = \left(\frac{R}{r}\right)^{k+\frac{1}{2}} - \left(\frac{r}{R}\right)^{k+\frac{1}{2}}. (10)$$

Прежде, чем перейти к определению постоянных C_k , входящих в выражение (9), видоизменим граничное условие (5):

$$\frac{\partial U^*}{\partial r}\bigg|_{r=R} + \left(h^* - \frac{1}{2R}\right)U^*(R, z) = R z h(z)S^*(z) - [h(z) - h^*]U^*(R, z), \tag{11}$$

где
$$h^{\circ} = \frac{1}{2} \int h(\zeta) d\zeta$$
. Учитывая (6) и обозначая $C_{\bullet} = \frac{m_k}{k} \ (k \ge 1); \ C_{\circ} =$

 $= m_0$, из (11) имеем:

$$m_{h} = -\frac{kR}{(k+h^{2}R)D_{h}} \left[m_{0} \right] (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{m_{i}}{I} \int_{\zeta} (h^{*}(\zeta) - h^{*}) P_{R}(\zeta) d\zeta + \sum_{i=1}^{m} \frac{$$

$$-h^{\circ})P_{k}(z)P_{j}(z)dz + q_{k},$$

$$m_{0} = -\frac{1}{2h^{\circ}}\sum_{j=1}^{\infty}\frac{m_{j}}{j}\int_{z}[h^{\circ}(z)-h^{\circ}]P_{j}(z)dz + q_{0}.$$
(12)

Здесь

$$q_{k} = \frac{k}{k + h^{*}R} \left[\frac{1}{D_{k}} R_{2}^{3} \int_{-1}^{1} h^{*}(\zeta) S^{*}(\zeta) P_{k}(\zeta) d\zeta + \frac{1}{K} R^{-k - \frac{1}{2}} \int_{0}^{R} w_{k}(r) r^{k + \frac{3}{2}} dr \right]$$

$$q_{0} = \frac{1}{2h^{*}} \left[R^{1} \int_{-1}^{1} h^{*}(\zeta) S^{*}(\zeta) d\zeta + \frac{2}{K} R^{-3/2} \int_{0}^{R} w_{0}(r) r^{3/2} dr \right]. \tag{13}$$

Таким образом, для определения m_k получили бесконечную систему линейных алгебранческих уравнений (12). Для исследования полученной системы оценим вначале сумму модулей коэффициентов при неизвестных в каждом из уравнении. Учитывая предположенную выше ограниченность вариации коэффициента теплообмена $h^*(\zeta)$ и воспользовавшись оценками модуля полиномов Лежандра $P_k(\xi)$ и их производной, данными в работе (7)

$$(1-\mathbb{I}^2)^{1/4}|P_k(\mathbb{I})| = \sqrt{\frac{1}{n-1}}; \qquad (1-\mathbb{I}^2)^{3/4}|P_k'(\mathbb{I})| < \left(k+\frac{1}{2}\right)\sqrt{\frac{6}{n-1}}, \qquad (14)$$

где $n = \left\lfloor \frac{k}{2} \right\rfloor$, после некоторых упрощений будем иметь

$$= \frac{kR}{(k+h^*R)D_k} \left\| \int [h^*(\cdot) - h^*] P_k(\cdot) d\cdot \right\| + \sum_{l=1}^{\infty} \frac{1}{l} \int [h^*(\cdot) - h^*] P_k(\cdot) d\cdot \right\| + \sum_{l=1}^{\infty} \frac{1}{l} \int [h^*(\cdot) - h^*] P_k(\cdot) d\cdot \left\| \left\| \frac{14\sqrt{k}RH}{k+h^*R} \right\| + \frac{14RH}{\sqrt{k}} \right\|$$
(15)

Злесь через H обозначена полная париация функции $h^*(\zeta)-h^*$ в промежутке (-1:1). Из (15) усматриваем, что, начиная, от $k=k_1>K^2$, где k=14HR, суммы модулей коэффициентов в уравнениях (12) становятся меньше единицы и при возраствини k стремятся к нулю с быстротой $\frac{K}{V \, k}$. Снободные члены g_k , согласно предположению об ограниченности вариации функций $S(\theta)$, $h(\theta)$, $w(r,\theta)$ и неравенствам (14), будучи ограниченными в своей совокупности, с возрастанием k также стремятся к нулю с быстротой $O(k \, \pi)$. Согласно теории бесконечных систем (a), имеют место ограниченность решения и сходимость метода последовательных приближений. Задаваясь

значениями $S(\theta)$, $h(\theta)$, $w(r,\theta)$ и решая усеченную систему (12), найдем оценки величины m_k сверху и синзу, после чего способом, описанным в (°), получим из (6) и (9) значения $U(r,\theta)$ с избытком и недостатком. Оценим далее по модулю n-ый остаток ряда (6). Предполагая суммируемость первой производной $w(r,\theta)$ по r и θ , будем иметь внутри шара (r < R)

$$\delta_n(r,\theta) = \left| \sum_{k=n}^{\infty} U_k(r) P_k(\cos \theta) \right| < \frac{1}{\sqrt{\sin \theta}} \left[\frac{M}{\ln R - \ln r} \left(\frac{r}{R} \right)^n n^{-1/2} + \frac{1}{\lambda} w n^{-2} \right].$$

где $M = \max_{(k,n)} |m_k|$; w - полная вариация $w(r,\theta)$. На поверхности r = R

$$\delta_n(\theta) < \frac{2M}{\sqrt{\sin \theta}} n^{-1/2}$$

Заметим, что при конкретном задании функций $h(\theta)$, $S(\theta)$ и $w(r,\theta)$ можно значительно усилить быстроту убывания коэффициентов, определяемых из бесконечной системы (*), что позволяет существенно уменьшить число операций, необходимых для получения заданной точности решения.

Рассмотрим, например, случай, когда $h^*(\zeta)$ кусочно-постоянен а $S^*(\zeta)$ -кусочно-линейна:

$$h^*(1) = \begin{cases} h_1 & \text{при } -1 < 1 < 0 \\ h_2 & \text{при } 0 < 1 \end{cases} \quad S^*(1) = \begin{cases} S_0 + S_1, & \text{при } -1 < 1 < 0 \\ S_0 + S_2, & \text{при } 0 < 1 < 1; \end{cases}$$

$$w^*(r, 1) = 0.$$

В этом случае $h^* = \frac{1}{2}(h_1 + h_2)$, и из (12) и (13) имеем:

$$m_{k} = \frac{k(h_{1} - h_{2})R}{2(k + h^{*}R)D_{k}} \left\{ [1 - (-1)^{k}] \frac{m_{0}P_{k}'(0)}{k(k+1)} + \sum_{j=1}^{\infty} [1 - (-1)^{k+j}] \times \frac{[P_{k}'(0)P_{j}(0) - P_{j}'(0)P_{k}(0)]m_{j}}{j(k-j)(k+j+1)} + q_{k} \quad (k \ge 1) \right\}$$

$$m_{0} = \frac{h_{1} - h_{2}}{2(h_{1} + h_{2})} \sum_{j=1}^{\infty} \frac{P_{j}'(0)m_{j}}{j^{2}(j+1)} + q_{0}$$

Здесь

$$q_{k} = \frac{kR^{3k}}{(k+h^{\circ}R)D_{k}} \left[S_{0}P_{k}(0) \frac{h_{2}+(-1)^{k}h_{1}}{k(k+1)} - P_{k}(0) \frac{h_{2}S_{2}-(-1)^{k}h_{1}S_{1}}{(k-1)(k+2)} \right]$$
(17)

$$q_0 = \sqrt{R} \left(S_0 - \frac{h_1 S_1 - h_1 S_2}{2(h_1 + h_2)} \right).$$

а штрих при знаке суммы означает, что при суммировании индекс j = k опускается. Преобразуем неизвестные m_k , обозначив

$$m_{k} = \frac{(h_{1} - h_{2})RP_{k}(0)}{(k+1)(k+h^{*}R)D_{k}} (\eta - S_{0}) \overline{R}) + \frac{m_{k}}{R}; \quad m_{0} = m_{0}, \quad (k \ge 1)$$
 (18)

где постояниая у определяется из выражения

$$\eta = m_0^* + \sum_{j=1}^n \frac{P_j(0)m_j^*}{j^2}.$$
 (19)

Подставляя значения из (18) в (16) и замечая, что (6) $P_{2k+1}(0) = -P_{-}(0) = 0$ приходим к следующим соотношениям для неизвестных

$$m_{i} = -\frac{kR}{(k+h^{*}R)D_{k}} \left\{ \frac{h_{1} - h_{2}}{k+1} \sum_{j=1}^{2} \frac{1}{j^{2}(k-j)(k+j+1)} \times \right.$$

$$\left[(k(k+1)P_{k}(0)P'_{j}(0) - j(j+1)P_{j}(0)P_{k}(0))m_{j}^{*} + \frac{(h_{1} - h_{2})R}{(j+1)(j+h^{*}R)D_{j}} \right]$$

$$\left(\gamma_{i} - \sqrt{R}S_{0} \right) k(k+1)jP_{k}(0)P'_{j}^{2}(0) \left. \right| - k\sqrt{R} \frac{(h_{1}S_{1} - h_{2}S_{2})P_{k}(0)}{(k-1)(k+2)} \right\}; \qquad (20)$$

$$m_{i} = \frac{h_{1} - h_{2}}{h_{1} + h_{2}} \sum_{j=1}^{2} \frac{P_{j}(0)}{j^{2}(j+1)} \left[\frac{m_{j}^{*}}{j} + (h_{1} - h_{2})R \frac{(\gamma_{i} - \sqrt{R}S_{0})P_{j}(0)}{(j+1)(j+h^{*}R)D_{j}} \right] +$$

$$+ \sqrt{R} \left(S_{0} - \frac{h_{1}S_{1} - h_{2}S_{2}}{2(h_{1} + h_{2})} \right)$$

Как легко видеть, сумма модулей коэффициентов при неизвестных в k-м уравнении системы (20) и свободные члены при возрастании k стремятся к нулю с быстротой $O(k^{-1/2} \ln k)$. Учитывая (18), (9), (6), (3), для $U(r, \theta)$ получаем следующее выражение

$$U(r, \theta) = R + \frac{(h_1 - h_2)R(\eta - \sqrt{\kappa}S_0)P_k'(0)}{k(k+1)(k+h^*R)D_k} \left| P_k(\cos\theta)R^{-k-1/2}r^k \right|$$
(21)

Оценивая по модулю n-ый остаток этого ряда, имеем: внутри шара

$$r_n(r,\theta) < \frac{1}{(\ln R - \ln Z)\sqrt{\sin \theta}} |M| n^{-5/2} + (h_1 - h_2)R(r_i - \sqrt{R}S_0)n^{-2}|\left(\frac{r}{R}\right)^n$$

на поверхности r = R

$$h_n(\theta) < \frac{1}{\sqrt{\sin \theta}} \left[\frac{2}{3} M n^{-1} + (h_1 - h_2) R(\tau_i - \sqrt{R}S_0) n^{-1} \right].$$

Институт математики Академии наук Армянской ССР Գեղի ճամաբ ջեռմաճաղուդականության խառը եզբային խնդբի մասին

Հողվածում դիտարկվում է գնդում ջերմուիյան առանցքասիմետրիկ դույլայի հունկցիաների, որի անհայտ գործակիցը փոփոխվում է ըստ անկյան ինդրի լուծումը տրվում է շարքով՝ ըստ Լևժանդրի րազմանդամների և ստացիոնար ֆունկցիաների, որի անհայտ գործակիցները որոշվում են դժային հանրահաշվական հավասարումների անվերջ սիստեմից։

ЛИТЕРАТУРА — ԳРԱԿԱՆПЪРЗПЬЪ

Р. С. Минасян, ДАН Арм. ССР, т XXXIX, № 5 (1964) ² Р. С. Минасян, В кн. Тепло и массоперенос, т. VIII, Вопросы теории тепло и массопереноса, Минск, 1968.
В. А. Васильев, Дифференциальные уравнения, т. 10. № 7, 1974.
4 А. Б. Ефимов. В Н. Воробьев, 11ФЖ. т. 26. № 5, 1974.
5 Г. Карслоу, Д. Егер, Теплопроводность твердых тел, «Наука», 1964.
6 Е. В Гобсон, Теория сферических и эллипсондальных функций, ИЛ, 1952.
7 С. Н. Бернитейн, Собрание сочинений, т. 11, АН СССР, 1954.
7 Л. В. Канторович, В. И Крылов, Приближенные метолы высшего анализа, Физматгиз, 1962.
7 Р. С. Минасян, «Известия АН Арм. ССР», серия физ. мат. наук, т. XI, № 3 (1958).