УДК 517.55

MATEMATHKA

М. В. Казарян

О сепаратно мероморфных функциях

(Представлено вкадемиком АН Армянской ССР С. Н. Мергеляном 19/V1 1978)

Согласно фундаментальной теореме Гартогса функция f, определенная в области $D \subseteq C^N$, N > 1, голоморфная по каждой переменной при фиксированных остальных, является голоморфной в D.

Существенным усилением этого результата является следующая теорема (Сичак (¹)). Пусть D_k —область комплексной z_k —плоскости. $E_k \subset D_k$ — регулярный компакт и $h(z_k, E_k, D_k)$ — гармоническая мера E_k относительно ∂D_k , $k=1,2,\ldots,n$. Пусть функция f(z)= $=f(z_1,\ldots,z_n)$ определена и сепаратно голоморфия на множестве $X=(D_1\times E_1\times\cdots\times E_n)$ U \cdots — $(E_1,\ldots,E_{k-1},\ldots,E_{k-1},\ldots,E_{k-1},\ldots,E_{k-1},\ldots,E_{k+1},\ldots,E_k)$ функция $f(a_1,\ldots,a_{k-1},a_k)\in E_1\times\ldots\times E_{k-1}$ $\times E_{k+1}\times\cdots\times E_n$ функция $f(a_1,\ldots,a_{k-1},z_k,a_{k+1},\ldots,a_n)$ голоморфиа в D_k , $k=1,2,\ldots,n$. Тогда

1) f продолжается до функции f, голоморфной в

$$\Omega = |z \in D_1 \times \ldots \times D_n : h(z_1, E_1, D_1) + \ldots + h(z_n, E_n, D_n) < 1|$$

2) 2 — оболочка голоморфиости множества X.

В настоящей работе, которая является продолжением работы (²), аналогичные вопросы в более общей ситуации рассматриваются для мероморфных функций.

Ввиду наличия особенностей у мероморфных функций, само понятие сепаратной мероморфности требует дополнительного уточнения. Приведем его в более общей ситуации, чем это надо для наших теорем.

Пусть $D = C^n$, $G \subset C^m$ —произвольные области, $E \subset D$, $F \subset G$ —относительно замкнутые множества и $X = (D \times F) \cup (E \times G)$. Пусть, далее, функция f = f(z, w) со значениями в $C = C \cup |\infty|$ определена на X, за исключением некоторого замкнутого множества нулевой емкости. Обозначим через A' (соответственно A') множество всех $E = (w \in G)$ для которых $|z| \times G \subset A$ ($D \times |w| \subset A$). Тогда, если

1) $f(z, w_0)$ как функция от z мероморфно продолжается в D для любого фиксированного $w_0 \in F \setminus A$ "

2) $f(z_0, w)$ как функция от w мероморфно продолжается в G

для любого фиксированного $z_0 \in E \setminus A'$,

то мы говорим, что функция f сепаратно мероморфиа на множестве X (множество A мы будем называть множеством неопределенностей сепаратной мероморфной функции f).

Множество $E \subset C^n$ назовем C^n -регулярным в точке $z_0 \in C^n$ если $z_0 \in E$ (замыкание E) и для любой плюрисубгармонической в окрест-

ности го функции ф справедливо равенство

$$\varphi(z_0) = \lim \sup_{z \in E} \varphi(z).$$

Множество C^n —регулярных точек для E обозначим через E. Множество $E \subset C^n$ будем называть C^n -регулярным, если оно C^n -регулярно в каждой точке своего замыкания, т. е. если $E^* = \overline{E}$.

Основным результатом настоящей работы является

Теорема 1. Пусть D и G—области в C_z и C^m соответственно, $E \subset D$, $F \subset G$, C и C^m —регулярные компакты. Тогда любая сепаратно мероморфная на множестве $X = (D \times F) \cup (E \times G)$ функция f(z, w) продолжается до функции, мероморфной в окрестности X.

Теорема, по-видимому верна и в общем случае $D \subset C^n$, по наше доказательство проходит, только когда область D одномерна. Лишь в случае, когда $D = D_1 \times \cdots \times D_n$ и $E = E_1 \times \cdots \times E_n$, где $E_k \subset D_k$ — регулярные компакты, а $D_k \subset Cz_k$ — области, $k = 1, 2, \ldots, n$ аналогичная теорема тоже верна.

Для доказательства теоремы нам нужны некоторые обобщения известной леммы Ротштейна (³), которая в свою очередь является обобщением основной леммы Гартогса на мероморфные функции.

Пемма 1. Пусть $D \subset C_z^n$, $C_z^n = C_z^n - npoussonshue$ области, функция f = f(z, w) определена в D G_1 за исключением замкнутого множества A нулевой $C_z^n = -e$ мкости и мероморфна в D G. Тогда, если для любого $z_0 \in D$ A' функция $f(z_0, w)$ мероморфно по w продолжается в G_1 , то f мероморфна в $D \times G_1$.

При m=1 в случае, когда D-поликруг, G и G_1 концентрические круги, это лемма Ротштейна.

Лемма 2. Пусть $D \subset C_-^n$ произвольная область и $E \subset D$ компакт положительной C^n —емкости, пусть $G \subset G_1$ области в C_-^m , а функция f = f(z, w) голоморфна в $D \cap G$. Тогда, если для любого фиксированного $z_0 \in E$ функция $f(z_0, w)$ мероморфна по $w \in G_1$, то f мероморфна в некоторой окрестности $E^* \setminus G_1$.

Доказательство в случае m=1 получается из свойства получается в свойства получается в свойства получается из с

дится к случаю поликруга и получается индукцией по числу переменных m. Через $c_n(E)$ будем обозначать C^n емкость множества $E \subset C^n$.

Леммя 3. Пусть $D = C^* G = C^* - n$ роизвольные области, $E \subset D$, $F \subset G$ множества положительной C^n и $C^m - e$ мкости соответственно и функция $C^m = C^m - e$ мкости соотжестве $C^m = C^m - e$ мкости соотжестве $C^m = C^m - e$ мкости $C^m - e$ мкости C

Доказательство аналогично доказательству леммы 1 в работе (2) только вместо кругов с рациональными центрами и радиусами надо рассматривать множества вида $|w \in G:|\varphi.(w)| < \varepsilon$, где $|\varphi.|$ —счетное плотное подмножество в пространстве функций, голоморфных в G нерациональные числа.

Следующая лемма легко следует из работы Сичака (1).

Пемма 4. Пусть D-область в комплексной z-плоскости, $E \subset D$ компактное множество положительной емкости, $G \subset C^m$ -открытое множество и $F \subset G$ компакт. Тогда, если функция (z, w) сепаратно голоморфна на множестве $X = (D \setminus F) \cup (E \setminus G)$ и ограничена на $E \times G$, то для любой регулярной точки w компакта $F(w_0 \in F^*)$ существует положительное число $w \in F^*$ и область $w \in F^*$ существует положительное число $w \in F^*$ и область $w \in F^*$ существует положительное число $w \in F^*$ по область $w \in F^*$ $w \in F^*$ существует положительное число $w \in F^*$ $w \in F^*$ существует положительное число $w \in F^*$ $w \in F^*$ существует положительное число $w \in F^*$ $w \in F^*$ существует положительное число $w \in F^*$ $w \in F^*$ существует положительное число $w \in F^*$ $w \in F^*$

Доказательство теоремы 1. Поскольку f сепаратно мероморфна на X, а C^n — емкость C^n — регулярного компакта больше нуля, то по лемме 3 существуют подобласти $D_0 \subset D$, $G_0 \subset G$ и компакты $E_0 \subset E \cap D_0$, $F_0 \subset F \cap G_0$ положительной C и C^m —емкости соответственно такие, что функция f сепаратно голоморфна и ограничена на множестве $X_0 = (D_0 \times F_0) \cup U(E_0 \setminus G_0)$. По лемме 4 для любых фиксированных $(z_0, w_0) \in E_0 \setminus F_0$ существует поликруг $U \times V$ с центром в этой точке, куда f голоморфно продолжается. Применяя лемму 2, получим отсюда, что f продолжается до функции, мероморфной в окрестности множества $(D \times F_0^*) \cup (E_0 \times G)$. Далее, используя лемму Цорна точно так, как в $(^2)$, получим, что f мероморфна в окрестности множества $(E_1 \times G) \cup U(D \times F_1)$, где $E_1 \subset E$, $F_1 \subset F$ и $c(E/E_1) = c_m(F/F_1) = 0$.

Наконец, используя регулирность компактов E и F, отсюда мож-

но получить мероморфиость f в окрестности X.

Следствие 1. Пусть D — область комплексной z_k — плоскости, E_k — D — регулярный компакт, k=1,2,...,n, $D=1,...\times D_n$, $E=E_1\times ...\times E_n$. Пусть далее G=0 — произвольная область, F=G=0 Ст—регулярный компакт и функция G=00 сепаратно мероморфна на множестве $X=(D-F)\cup (E\times G)$. Тогда f продолжается до функции, мероморфной в окрестности X.

Доказательство. При m=1 эту теорему мы только что доказали. Далее продолжим по индукции. Пусть $E_{n+1}\subset D_{n+1}\subset C_{E_{n+1}}$, $D'=D\times D_{n+1}$, $E'=E\times E_{n+1}$, $X=(D'\times F)\cup (E'-G)$, а функция f(z',w) сепаратно мероморфиа на X'. Фиксируем произвольную точку и рассмотрим функцию $f_{E_n}(z_{n-1},w)=f(z_{n-1},w)$. Она сепаратно мероморфиа на множестве $(D_{n-1},w)=f(z_{n-1},w)$. Она сепарательно, по доказанной теореме f_{E_n} мероморфиа в некоторой его окрестности w. С другой стороны поскольку f(z',w) мероморфиа в D для любого фиксированного w (F A^n , то получаем, что f сепаратно мероморфиа на множестве f (f f) f (f f) По индуктивному предположению она мероморфиа в некоторой окрестности f этого множества, а очевидно, содержит

Следствие 2. Пусть D- область комплексной z- плоскости, $E \subset D-$ компакт положительной гикости и $G \subset C^m-$ открытое иножество. Пусть далее, функция f=f(z,w) сепаратно меронорфия на множестве (D) (D)

- 1) $f(z,w_0)$ мероморфио по г продолжается в D для любого фиксированного $w_0 \in A^*$
- 2) (мероморфно по w продолжиется в C для любого фиксированного $z_0 \in E$ A'.

 Тогон f мероморфна в $D \setminus G$.

Доказательство. Пусть $w_o \in G$ произвольная точка, $F = |w| |w| = r |cG, r = (r_1, ..., r_m); r_b > 0, r_b = 1.2,.$ Тогда, по теореме 1, f мероморфна на D = F, а в силу произволь-

иости $\mathbf{z}_0 \in G$ она мероморфиа в $D \times G$.

Замечание. Вопрос об оболочке мероморфности множества X (г. е. максимальной области, куда мероморфно продолжается любая мероморфная на X функция) мы не рассматривяем по той простой причине, что она совпадает с его оболочкой голоморфности описанной Сичаком в (1). Действительно, в любой области $D = C^n$ разрешима слабая проблема Пуанкаре (см. (4)) т. е. если f мероморфна в D, то её можно представить в виде f где f и f голоморфны в f пероморфна в некоторой окрестности f мероморфна в некоторой окрестности f множества f то f является отношением двух голоморфных в f функций f и f голоморфных в f функций f и f голоморфных в f тоголоморфных в f обращением f в f мероморфна в f и f голоморфных в f тоголоморфных в

Ukujurum obradary pashighmabeh duuht

insignation of the contract of the contract C^{n} , V>1 and C^{n} are contact as C^{n} and C^{n} and C^{n} are contact as C^{n} and C^{n

There were to $D \subset C^n$, $G \subset C^m$ when which $E \subset D$ as F = G is completely the property of the property o

- 1) $f(z, w_0)$ -b apople ϕ in Elypow z-by with $dp w_0 \in F$ A ϕ by a = 0 in f and a = 0 in f and a = 0 in f and f f in f and f f in f in
- 2) $\int (z_0, w) b$ apalo ϕ in by ϕ which ϕ which ϕ ϕ ϕ ϕ is ϕ and ϕ in ϕ and ϕ and ϕ and ϕ and ϕ are ϕ and ϕ and ϕ and ϕ are ϕ and ϕ and ϕ are ϕ are ϕ and ϕ are ϕ are ϕ and ϕ are ϕ are ϕ and ϕ are ϕ and ϕ are ϕ and ϕ are ϕ and ϕ are ϕ are ϕ and ϕ are ϕ and ϕ are ϕ and ϕ are ϕ are ϕ and ϕ are ϕ are ϕ and ϕ are ϕ and ϕ are ϕ are ϕ and ϕ are ϕ are ϕ and ϕ are ϕ are ϕ are ϕ and ϕ are ϕ are ϕ and ϕ are ϕ are ϕ and ϕ are ϕ are ϕ

JHTEPATYPA-SCHARLAPPENIA