ДОКЛАДЫ АКАДЕМИИ НАУК АРМЯНСКОЯ ССР

LXIII 1976 5

УДК 519.217

МАТЕМАТИКА

Э. А. Данислян, Г. А. Попов

О безграничной делимости времени ожидания в системе $M_r|G_r|1|\infty$ с абсолютным приоритетом

(Представлено чл.-корр. АН Армянской ССР Р. А. Александряном 24/V1 1976)

В настоящем сообщении доказывается безграничная делимость (б. д.) стационарного распределения времени ожидания начала обслуживания вызовов i-го потока (i-вызовов) в системе $M_r|G_r|1|\infty$ с разновидностями абсолютного приоритета.

Потоки вызовов L_1, \ldots, L_r независимые и пуассоновские. Параметр потока L_i есть $a_i > 0$. Длительность времени обслуживания i-вызова есть случайная величина (сл. в.) с функцией распределения (ф. р.) $B_i(t), B_i(0) = 0$.

Промежутки между соседними поступлениями и длительности обслуживания вызовов в совокупности независимы.

Вызовы потока L_i имеют абсолютный приоритет перед вызовами потока L_j при i < j. Рассматриваются разновидности таких систем: а) с дообслуживанием прерванного вызова; б) потерей; в) обслуживанием заново.

Пусть $W_i(t)$ — стационарное распределение времени ожидания i — вызовом начала обслуживания. Положим:

$$\omega_i(s) = \int_0^{\infty} e^{-st} dW_i(t), \quad z_i = a_1 + \ldots + a_i.$$

Число ρ_{11} — загрузка системы вызовами потоков L_1, \ldots, L_L .

Обозначим через $\Pi_i(t)$ ф. р. периода занятости (i- периода) обслуживанием вызовов потоков L_1 . . . L_i , через $\Pi_{ij}(t)$ — ф. р. i- периода, начавшегося с обслуживания j- вызова (j=1,i); через $H_i(t)$ — ф. р. промежутка, начинающегося с первого поступления на прибор i- вызова и кончающегося первым последующим моментом освобождения системы от этого i-вызова и вызовов потоков L_1 , . . . , L_{i-1}

Наконец, обозначим $\Pi_i(t) = 1 - \Pi_i(t)$, $\overline{H}_i(t) = 1 - H_i(t)$. 1°. Пусть порядок обслуживания k — вызовов прямой,

Теорема 1 а) ω_k (s) есть преобразование Лапласа-Стильтьеса $(n, \mathcal{A}, -C)$ б. д. сл в..

б) Киноническое предстивление для ш, (s) имеет вид

$$\omega_k(s) = \exp[-\int_0^s x^{-1}(1-e^{-sx})\Lambda_k(dx)],$$
 (1)

где мера Λ_k при $\phi_{k-11} < \frac{1}{2}$ равна

$$\Lambda_{k}((-\infty,t]) = G_{k}(t) + \sigma_{k-1} \prod_{k=1}^{\infty} (t) * \sum_{n \ge 0} (-\sigma_{k-1})^{n} \left[\prod_{k=1}^{\infty} (t) \right]_{*}^{n}$$
 (2)

 $a npu p_{k-11} > \frac{1}{2}$

$$\Lambda_{k}((-\infty, t]) = G_{k}(t) + \pi_{k-11}^{-1} \prod_{k=1}^{\infty} (t) * \sum_{n>0} \alpha_{kn}(t).$$
 (3)

Здесь — знак свертки, и обозначено

$$G_k(t)=a_k\widetilde{H}_k(t)$$
 $=\sum_{n\geq 0}a_k^n\left[\widetilde{H}_k(t)\right]_{\infty}^n$, $\widetilde{H}_k(t)=\int_0^t\overline{H}_k(u)\mathrm{d}u$,

$$\widetilde{\widetilde{H}}_{k}(t) = \int_{0}^{t} u \overline{H}_{k}(u) du, \ \widetilde{\Pi}_{k-1}(t) = \int_{0}^{t} \overline{\Pi}_{k-1}(u) du, \ \widetilde{\widetilde{\Pi}}_{k-1}(t) = \int_{0}^{t} u \overline{\Pi}_{k-1}(u) du,$$

 $Z(t) - \phi$ ункция Хевисайда, $\alpha_{kn}(t) = [\pi_{k-11}^{-1}\Pi_{k-1}(t) - (1-\rho_{k-11})^{-1}Z(t)]^{n}$. Доказательство. Введем п. Л. — С.

$$\pi_k(s) = \int e^{-st} d\Pi_k(t), \ \pi_{ki}(s) = \int e^{-st} d\Pi_{ki}(t), \ h_k(s) = \int e^{-st} dH_k(t).$$

Известно (1)

$$\omega_{k}(s) = \frac{(1 - \rho_{k1}) \cdot \mu_{k}(s)}{s - a_{k} + a_{k}h_{k}(s)}, \quad h_{1}(s) = \int_{0}^{\infty} e^{-st} dB_{1}(t),$$
(4)

 $\pi_{kk}(s) = h_k(y_k), \ \sigma_k \pi_k(s) = \sigma_{k-1} \pi_{k-1}(y_k) + a_k \pi_{kk}(s).$

где

$$\mu_k(s) = s + \sigma_{k-1} - \sigma_{k-1} \pi_{k-1}(s), \ y_k = s + a_k - a_k \pi_{kk}(s).$$

Конкретный вид функций $h_k(s)$, приведенный в (1), нам не понадобится.

Заметим, что $P(z) = (1-\rho)(1-\rho z)^{-1}$, $0 < \rho < 1$, есть производящая функция геометрического распределения, которое б. д.. Но так как $0 \le a_k h_{k_1} = -a_k h_k(0) < 1$ (см. (1)) и

$$\tilde{g}_k(s) \stackrel{\text{del}}{=} (sh_{k1})^{-1} (1 - h_k(s)) = h^{-1} \int_0^s e^{-st} \overline{H}_k(t) dt$$

является п. Л. — С. неотрицательной сл. в., то на основании (2), стр. 532, зад. 17 $P(\gamma_k(s)) = (1-a_k h_{k1})(1-a_k h_{k1}\gamma_k(s))^{-1}$ есть п. Л. — С. некоторой неотрицательной б. д. сл. в..

Теперь рассмотрим функцию

$$\varphi_k(s) = [(1 - \varphi_{k1})/(1 - \alpha_k h_{k1})] \cdot [\mu_k(s)/s] \stackrel{\text{def}}{=} d_k [\mu_k(s)/s].$$

Покажем, что $\varphi_R(s)$ есть п. Л. —С. некоторой б. д. сл. в. Утверждение будем доказывать методом математической индукции по k. Вследствие $\varphi_1(s) = s$ основание индукции очевидно. Из формул (4) имеем

$$\frac{d_{n+1} \frac{\mu_{n+1}(s)}{s} = d_{n+1} \frac{y_{n} + \sigma_{n-1} - \sigma_{n-1} + \pi_{n-1}(y_n)}{y_n} \cdot \frac{y_n}{s} = d_n \frac{\mu_n(y_n)}{y_n} \cdot \frac{d_{n+1}}{d_n} \cdot \frac{y_n}{s}$$
(5)

По предположению индукции $d_n \frac{\mu_n(s)}{s}$ есть п. Л. —С. б. д. сл. в. В силу (*), стр. 516 $\frac{d}{ds} \ln \frac{s}{\mu_n(s)}$ есть вполне монотонная функция (вп. м. ф.). Но $y_n \geqslant 0$ и $y_n(s)$ — вп. м. ф., следовательно, вп. м. ф. будет также функция $\frac{d}{ds} \ln \frac{y_n}{\mu_n(y_n)}$, то есть функция $d_n \frac{y_n}{\mu_n(y_n)}$ есть п. Л. —С. б. д. сл. в. Далее, так как $P(\gamma_n(s))$ есть п. Л. —С. б. д. сл. в., то в силу (1)

$$P(\gamma_n(y_n)) = \frac{(1-a_nh_{n1})y_n}{y_n - a_n + a_nh_n(y_n)} = \frac{(1-a_nh_{n1})y_n}{y_n - a_n + a_n\pi_{nn}(s)} = \frac{(1-a_nh_{n1})y_n}{s}$$

также есть п. Л. – С. б. д. сл. в.

Из (5) получаем, что $d_{n+1} = \frac{\mu_{n+1}(s)}{s}$, как произведение п. Л. —С. двух б. д. сл. в., само есть п. Л. — С. б. д. сл. в..

Найдем каноническое представление для w_k(s).

В силу (*), стр. 517, $\omega_k(s)$ представимо в виде (1), где мера Λ_k удовлетворяет условиям $(x^{-1}\Lambda_k(\mathrm{d} x)<\infty)$ и $\Lambda_k(A)<\infty$ для любого ограниченного множества A.

B (1) показано: при $\rho_{k-11} < 1$ — $\frac{\rho_{k-11}}{1-\rho_{k-11}}$. Неравенство $\frac{1}{1-\rho_{k-11}} < 1$ ($\sigma_{k-1}\pi_{k-11} > 1$) выполнено тогда и голько тогда когда

$$p_{k-11} < \frac{1}{2}$$
 $\left(p_{k-11} > \frac{1}{2}\right)$.

Положим

$$A_{k} = a_{k}h_{k1}(-\gamma_{k}(s)) \cdot |1 - a_{k}h_{k1}\gamma_{k}(s)|^{-1},$$

$$B_{k} = a_{k-1}(s\mu_{k}(s))^{-1}|1 - \tau_{k-1}(s) + s\tau_{k-1}(s)|.$$

Тогда

$$A_{k}(s) = \int_{0}^{det} e^{-st} \Lambda_{k}(dt) = \frac{d}{ds} \ln \frac{1}{\omega_{k}(s)} = A_{k} + B_{k}.$$

Нетрудно заметить, что

$$B_{k} = \sigma_{k-1} \left[-\left(\frac{1 - \pi_{k-1}(s)}{s} \right)' \right] \cdot \left(\frac{\mu_{k}(s)}{s} \right)^{-1} = \int_{0}^{\infty} e^{-st} t \overline{\prod}_{k-1}(t) dt \cdot \left(1 + \sigma_{k-1} \frac{1 - \pi_{k-1}(s)}{s} \right)^{-1}.$$

Отсюда при $\rho_{k-11} < \frac{1}{2}$ получаем

$$B_{k} = \sigma_{k-1} \int_{0}^{\infty} e^{-st} t \overline{\Pi}_{k-1}(t) dt \cdot \sum_{n>0}^{\infty} (-\sigma_{k-1})^{n} \int_{0}^{\infty} e^{-st} d \left[\overline{\Pi}_{k-1}(t) \right]_{+}^{n}$$

и в силу (3), стр. 317, замеч. 2 получаем

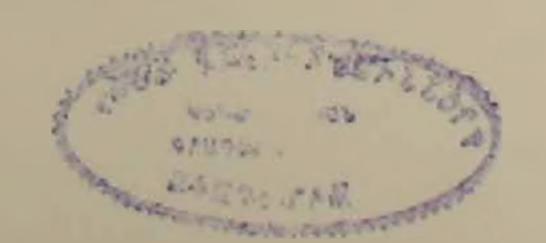
$$B_k = \int_0^\infty e^{-st} d\left\{\sigma_{k-1} \prod_{k=1}^\infty (t) + \sum_{n>0} (-\sigma_{k-1})^n \left[\prod_{k=1}^\infty (t)\right]_*^n\right\}.$$

Подобным же образом преобразуется A_k .

Окончательно. находим $I_{k}(s)$ при $\rho_{k-11} < \frac{1}{2}$ которое удается обратить и получить (2).

При $\rho_{k-11} > \frac{1}{2}$ представим B_k в следующем виде:

$$B_k = \sigma_{k-1} \int_0^\infty e^{-st} d \prod_{k=1}^\infty (t) \cdot C_k$$



$$C_{k} = \{1 + \sigma_{k-1}s^{-1}(1 - \pi_{k-1}(s))\}^{-1} = (\sigma_{k-1}^{-1} - 1)\{1 + (s\pi_{k-1})^{-1}(1 - \pi_{k-1}(s)) - (1 - \rho_{k-1})^{-1}\}$$

Поскольку

$$\left|\frac{1-\pi_{k-1}(s)}{s\pi_{k-1}}-(1-\rho_{k-1})^{-1}\right|\leq \max(\rho_{k-1}^{-1}-1,\ (1-\rho_{k-1})^{-1})<1,$$

TO

$$C_k = (o_{k-11}^{-1} - 1) \sum_{n > 0} \int_0^\infty e^{-t} d\alpha_{kn}(t).$$

Так как $\max_{m} \max_{0 < x < -\infty} \max_{n=0}^{m} \alpha_{kn}(x) \le \max_{m} \sum_{x = \infty}^{m} \left| \left| \lim_{x \to \infty} \alpha_{kn}(x) \right| + \left| \lim_{x \to 0} \alpha_{kn}(x) \right| \right| < \infty,$

то в силу (3), стр. 317, замеч. 2 получаем

$$C_k = \int_0^\infty e^{-st} d\{(p_{k-11}^{-1} - 1) \sum_{n>0} \alpha_{kn}(t)\},$$

что и т. д..

Замечание 1 Положим $\Lambda_k(A) = \Lambda_k(A/\{0\}), \quad D_k(\mathrm{d} x) = \frac{x}{1+x^2} \bar{\Lambda}_k(\mathrm{d} x).$

Тогда

$$D_{k}(|0|) = 0, \ D_{k}((-\infty, +\infty)) = \int_{0}^{\infty} \frac{x}{1+x^{2}} \Lambda_{k}(dx) < \infty.$$

$$\int_{0}^{\infty} x^{-1}D_{k}(dx) = \int_{0}^{\infty} (1+x^{2})^{-1}\Lambda_{k}(dx) < \infty.$$

Переписав (1) в виде

$$w_k(s) = \exp\left\{\int_0^{\infty} \left(e^{-sx} - 1 + \frac{sx}{1+x^2}\right) \frac{1+x^2}{x^2} D_k(dx) - s\int_0^{\infty} x^{-1} D_k(dx)\right\},$$

получаем представление Леви—Хинчина для ω_k (s).

 2^n . Обозначим через $w_k^{(u)}(t)$ виртуальное время ожидания в нашей системе в момент t, если порядок обслуживания k — вызовов инверсионный. При этом предполагаем, что прерванный k — вызов имеет преимущество в обслуживании перед другими k — вызовами.

Теорема 2. $w^{(n)}(s) = \lim_{t \to \infty} Me^{-sw_k^{(n)}(t)}$ является $n. \mathcal{J}. -C. 6. \partial.$

Доказательство. Пусть $w_n(t)$ — виртуальное время ожидания в момент t n — вызова при прямом порядке обслуживания вызовов каждого из первых n потоков. Обозначим через $\xi_1^{(n+1)}$, $\xi_2^{(n+1)}$, $\xi_2^{(n+1)}$, ...: последовательность независимых одинаково распределенных сл. в., имеющих ϕ . р. периода занягости системы M|G| $1/\infty$ с интенсивностью

$$a_n + a_{n+1}$$
 входящего потока и ф. р. $B(t) = \frac{a_n}{a_n + a_{n+1}} B_n(t) +$

 $+\frac{a_{n+1}}{a_n+a_{n+1}}B_{n+1}(t)$ длительности обслуживания вызовов.

Имеет место равенство

$$w_{n+1}^{(u)}(t) = w_n(t) + \xi_1^{(n+1)} + \dots + \xi_{(w_n(t))}^{(n+1)}. \tag{6}$$

Здесь равенство понимается в смысле совпадения ф. р. обеих сторон (6), а v(x) — сл. в. числа n — вызовов и (n+1) — вызовов, поступивших в систему за время t.

Введем обобщенный пуассоновский процесс со сносом (1), стр. 223

$$X_{n+1}(t) = t + \xi_1^{(n+1)} + \dots + \xi_{\gamma(t)}^{(n+1)}.$$

Тогда $w_{n+1}^{(u)}(t) \stackrel{d}{=} X_{n+1}(w_n(t))$. то есть $w_{n+1}^{(u)}(t)$ подчинен $X_{n+1}(t)$ с направляющим процессом $w_n(t)$. Поскольку обобщенный пуассоновский процесс со сносом б. д., то при б. д. $w_n(t)$ таковым же в силу (2), стр. 518 будет $w_{n+1}^{(u)}(t)$. Следовательно, используя теорему 1, утверждение теоремы 2 становится очевидным.

Замечание 2. Каноническое представление в данном случае получается аналогично, но вид его довольно громоздок.
3°. Естественным образом возникает вопрос: является ли б. д. стационарное распределение времени ожидания в других приоритетных системах?

Рассмотрим, например, систему $M_r|G_r|1|\infty$ с относительным приоритетом. Поскольку $\omega_r(s)$, $\omega_r(s)$ в данной системе и в системе с дообслуживанием совпадают, то на основании теоремы 1 заключаем

Следствие 1. Для систем с относительным приоритетом прямым и инверсионным порядком обслуживания вызовов $\omega_r(s)$, $\omega_r^{(u)}(s)$ есть п. Л. — С. б. д. сл. в.,

Замечание 3. В системе с относительным приоритетом для потоков L_1, \ldots, L_{r-1} времена ожидания, вообще говоря, не б. д..

Для доказательства этого утверждения возьмем r=2, $\beta_{11}=\beta_{21}=1$, $\beta_2(s)=e^{-s}$. Тогда из (4), стр. 111.

$$\omega_1(s) = \frac{[1 - (a_1 + a_2)]s + a_2[1 - \beta_2(s)]}{s - a_1 - a_1\beta_1(s)}.$$
 (7)

Предположим, что $\omega_1(s)$ б. д. без каких-либо дополнительных ограничений. Поскольку предел б. д. сл. в. является б. д. сл. в., то, устремляя в (7) $a_1 \rightarrow 0$, $a_2 \rightarrow 1$ ($a_1 + a_2 = 1$), находим: $\lim_{\substack{a_1 \rightarrow 0 \ a_1 \rightarrow 1}} \omega_1(s) = s^{-1}(1-e^{-s})$, что является п. Л. — С. равномерного на [0,1] распределения, которое не б. д..

Замечание 4. Для систем с абсолютным и относительным приоритетом $\omega_k(s)$ не есть П. Л.— С. устойчивого закона $(k=\overline{1,r})$.

Действительно, устойчивые сл. в. не имеют скачков в нуле, что следует из их канонического представления. Но

$$\lim_{s\to\infty} \omega_k(s) = \begin{cases} 1-\rho_{k1}, & \text{абсолютный приоритет.} \\ 1-\rho_{r1}, & \text{относительный приоритет.} \end{cases}$$

Замечание 5. Рассмотрим процесс восстановления, образованный точками начал k — периодов, П. Л.—С. функции восстановления указанного процесса равно $\pi_k(s) \frac{\sigma_k}{s+\sigma_k}$. Известно ((2), стр. 434), что у процесса восстановления с функцией восстановления B(t) в стационарном режиме ф. р. остаточного и прошедшего времени ожидания равны $m^{-1}\int\limits_0^t (1-B(u))\mathrm{d}u$ ($m=\int\limits_0^s (1-B(u))\mathrm{d}u$), и, следовательно, их п. Л.—С. равны $(ms)^{-1}(1-\beta(s))$, где $\beta(s)=\int\limits_0^s e^{-st}\mathrm{d}B(t)$. Отсюда следует, что п. Л.—С. времени, прошедшего с момента начала последнего перед данным моментом k — периода, а также времени до начала следующего k — периода, равны

$$\frac{1 - \pi_k(s) z_k \cdot (s + \sigma_k)^{-1}}{(\sigma_k^{-1} + \pi_{k_1})s} = \frac{\mu_k(s) \cdot s^{-1}}{1 + \sigma_k \pi_{k_1}} \cdot \frac{\sigma_k}{s + \sigma_k}$$

и, значит, б. д. как произведение б. д. сомножителей.

Авторы признательны Б. С. Нахапетину за ценные замечания, сделанные при чтении рукописи.

Вычислительный центр Академии наук Армянской ССР

է. Ա. ԴԱՆԻԵԼՑԱՆ, Գ. Ա. ՊՈՊՈՎ

Բացաբծակ նախապատվությամբ $M_r/G_r|1|\infty$ սիստեմի սպասման ժամանակի անվերջ բաժանելիության մասին

Աշխատանքում ապացուցված է $M_r|G_r|1|\infty$ սիստնմի i-րդ (i=1,r) հոսքի պահանջի սպասման ժամանակի անվերջ բաժանելիությունը բացար- ձակ նախապատվության տարբերակների համար i-րդ հոսքի պահանջների 276

ինչորես ուղեղ կարդուվ սպասարկելու դեպքում, այնպես էլ ինվերսիոն։ Ստացված են դիտարկվող սպասման ժամանակների՝ էևի-Խինչինի կանոնիկ վերլուծությունները։

Նույն տիպի սիստեմում, ուր ընդունված է Հարաբերական նախապատվության դիսցիպին, բ-րդ հոսքի պահանջների սպասարկման կարգն ուղիղ էւ բաժանելի է, եթե այդ հոսքի պահանջների սպասման ժամանակներն ընդհանրապես անվերջ բաժանելի չեն, ինչ դույլ է տալիս աշխատանքում բերված օրինակը։ Վերոդիչյալ դիսցիպլինների դեպքում դիտարկվող սպասման ժամանակները կալուն չեն։

ЛИТЕРАТУРА — ԳРԱԿԱЪПЪРВЯБЪ

¹ Э. А. Даниелян, «Известия АН Арм ССР», Математика, Х, № 3, 1975 г. ² В. Феллер, Введение в теорию вероятности и ее приложения, «Мир», т. 2, М., 1967. ³ Г. Е. Шилов, Математический апализ. Специальный курс ГИФМЛ, М., 1961. ¹ Б. В. Гнеденко и др. Приоритетные системы обслуживания, МГУ, М., 1973.