LXIII

1976

УДК 530 145

ФИЗНКА

Г. А. Варданян

Обмен местами атомов в квантовом кристалле

(Представлено чл.-корр. АН Армянской ССР Г. С. Саакяном 19/11 1976)

Твердые растворы He^3-He^4 являются квантовыми кристаллами, свойства которых обусловлены большими нулевыми колебаниями атомов, почти свободно движущиеся в дискретном пространстве кристаллической решетки ($^{1-2}$). Поэтому при исследовании физических свойств раствора He^3-He^4 , необходимо учитывать корреляцию движения атомов на близких расстояниях (3,4). Одним из экспериментальных доказательств этой корреляции является большая «мягкость» этих кристаллов.

Еще один специфический квантовый эффект, являющийся, вообще говоря, прямым следствием больших нулевых колебаний, связан с тупнельным движением атомов.

Естественно, что в силу кванго-мехапического туннелирования, в растворе He³—He⁴ возможен одновременный обмен местами атомов He³ и He⁴. Этот процесс рассматривается в настоящей работе для системы слабого раствора He³ (фермноны) в He⁴. Туннельный Гамильтоннан системы He³—He⁴, в том случае, когда изотопы находятся на расстоянии

R. будет*:

$$H_{T} = \sum_{\vec{R}} \frac{A_{\vec{R}}^{3} A_{\vec{R}}^{4}}{-\Delta} \hat{a}_{\vec{R}}^{+} \hat{a}_{\vec{R}}^{+} \hat{b}_{\vec{R}}^{+} \hat{b}_{\vec{R}}^{+}, \tag{1}$$

где

$$A_{\overline{R}}^{3,4} = \sum_{k} \varepsilon^{3,4}(k)e^{ik\overline{R}}. \tag{2}$$

Обозначим $a + b_{\vec{R}} = c + m a_{\vec{R}} b + c_{\vec{R}}$. Операторы $c_{\vec{R}} + c_{\vec{R}}$ описывают примесоны в узле \vec{R} (Обозначим $A = A + A + C_{\vec{R}}$)

Расстояние R между атомами определяется из условия $U(R)-\Delta$ где U(R) потенциал взаимодействия, Δ — ширина зоны.

Итак,

$$\hat{H}_T = -\frac{2}{\Delta} \sum_{\vec{R}} A_{\vec{R}} \hat{c}_{\vec{R}}^{\dagger} \hat{c}_{\vec{R}}^{\dagger} \hat{c}_{\vec{R}}^{\dagger}. \tag{3}$$

Следовательно, оператор

$$\hat{c}_{\overrightarrow{K}}^{+} = \sum_{\overrightarrow{R}} \hat{c}_{\overrightarrow{R}}^{+} e^{i \overrightarrow{k} \overrightarrow{R}}.$$

удовлетворяет следующему уравнению движения (5);

$$\frac{id\hat{c} + \hat{k}}{dt} = \left[\hat{c} + \hat{k}, \hat{H}_T\right] = -2\varepsilon(\hat{k})\hat{c} + \hat{k}, \tag{4}$$

где

$$\varepsilon(\vec{k}) = \sum_{\vec{a}} A_{\vec{a}} e^{i\vec{k}\cdot\vec{a}} . \tag{5}$$

В случае простой кубической решетки решение уравнения (4)

$$\hat{c}_{\overrightarrow{p}}^{+} = I_{s_1}(A_a/\Delta t)I_{s_1}(A_a/\Delta \cdot t)I_{s_1}(A_a/\Delta \cdot t), \qquad (6)$$

(где $R = R|s_1, s_2, s_3|$) описывает возбуждения с законом дисперсии:

$$\varepsilon(\vec{k}) = 2 \left[\frac{A_a^3 A_a^4}{\Delta} \right] (1 - \cos \vec{k} \ \vec{a}). \tag{7}$$

Ширина флуктуационной зоны $\Delta' \sim \frac{A_a^4 A_a^4}{\Delta} \sim$ hI, где I — величина обменного интеграла. При $V=20~cm^3/mon$, I=16~mK и $\Delta'=0$, 5mK.

Величина Δ' оказывается большей по сравнению с Δ для чистой системы He^4 .

Следовательно, вероятность туннелирования Δ'/\hbar увеличивает ся: наличие атомов He^3 малой концентрации увеличивает квантовость макроскопической системы. Таким образом, измерение ширины зоны в растворе, при разных относительных концентрациях изотопов гелия, может дать информацию о степени квантовости данной системы.

Выражаю глубокую благодарность академику И. М. Лифшицу за полезные советы.

Ереванский государственный университет

Դ. Ա. ՎԱՐԴԱՆՑԱՆ

Ատոմների տեղափոխանակումը քվանտային բյուբեղում

Դիտարկվում է He⁴ ատոմների ղանգվածների տարրերությունը տեղերի կորտան ատոմների ամպիտուդայի անդիրաման ատոմների և He⁴ ատոմների ղանգվածների տարրերությունը տեղերի

յացմանը։ - արդանակման ժամանակ բերում է ղանդվածային ֆլուկտուացիաների առա-

Առաջացող վոնայի լայնության փորձնական որոշումը կարող է Հնարավորություն ստեղծելու դիտարկվող համակարդի քվանտայնության աստիձանն որոշելու համար։

ЛИТЕРАТУРА— ЧРИЧИБИЕР ВИЕБ

¹ А. Ф. Андреев, И. М. Лифииц, ЖЭТФ, 56, 2057 (1969). И. М. Лифииц, Г. 1. Варданян, ДАН Арм. ССР, г. LVIII, № 2 (1974). ³ А. Ф. Андреев, ЖЭТФ 68, 2341 (1975). ⁴ И. М. Халатников, Теорня сверхтекучести, М., 1973. Л. Д. Ландау, Е. М. Лифииц, Квантовая мехапика, М., 1963.