LXIII

1976

УДК 517.11+518.5

МАТЕМАТИКА

О. С. Асатрян

О ретрактах нумерованного множества Клини

(Представлено академиком АН Армянской ССР С. Н. Мергеляном 13/11 1976)

В работе рассмотрены некоторые свойства ретрактов нумерованного множества всех частично рекурсивных функций (ч. р. ф.) Клини — K. Дано полное описание всех конечных ретрактов $K(^1)$.

Определим две о. р. ф. $\alpha(x, y)$ и $\beta(x, y)$ так:

 $\varphi_{a(x,y)}(z) = \begin{cases} \varphi_X(z) \lor \varphi_V(z) \text{ в зависимости от того какой раньше вы- числится} \end{cases}$ не определена в противном случае, $\phi_{x}(z) = \begin{cases} \phi_{x}(z) & \text{если } \phi_{y}(z) - \text{определена & } \phi_{x}(z) = \phi_{y}(z) \\ \text{не определена в противном случае.} \end{cases}$

Обозначим: $\varphi_x \cup \varphi_y = \varphi_{\mathfrak{a}(x,y)}$.

$$\varphi_{X} \cup \varphi_{Y} = \varphi_{\mathfrak{a}(x,y)},$$

$$\varphi_x \cap \varphi_y = \varphi_{\beta(x,y)},$$

Заметим, что $\varphi_x \cap \varphi_y -$ точная нижняя грань функций φ_x и φ_y в К.

Если φ_x и φ_y — совместны, то $\varphi_x U \varphi_y$ точная верхняя грань φ_x и φ_y BK.

Если $\varphi_{\mathcal{X}}$ и $\varphi_{\mathcal{Y}}$ не совместиы, то у $\varphi_{\mathcal{X}}$ и $\varphi_{\mathcal{Y}}$ вообще нет верхней грани в K. Отметим свойства введенных операций.

Свойство 1) если чем и фу совместны, то выполнены неравен-CTBa:

$$\varphi_{\beta(x,y)} \leq \varphi_{\alpha(x,y)}$$

$$\varphi_{\beta(x,y)} \leq \varphi_{\gamma} \leq \varphi_{\alpha(x,y)}$$

Свойство 2) Если $\varphi_x \leq \varphi_y$, то φ_x и φ_y совместны.

Известно, что всякий морфизм (2) μ : K-K задает монотонное и непрерывное отображение (3). Легко убедиться, что и сохраняет совместность ч. р. ф.

Теорема 1. Если $o = [\varphi_{\rho(x)}]_{x \in N}$ ретракт K (2),

1) о нижняя полурешетка.

TO

2) всякая совместная пара ч. р. ф. т. и ф, из т имеет наименьшую верхнюю грань,

Доказательство. 1) Пусть $\varphi_y \in \sigma$ тогда $\varphi_{\rho(x)} = \varphi_{X}, \; \varphi_{\rho(y)} = \varphi_y$, имеем:

 $\varphi_{\beta(p(x),p(y))} \leq \varphi_{p(x)}$

 $\varphi_{\beta(p(x),p(y))} \leq \varphi_{p(y)}$

 $\varphi_{\rho\beta(\rho(x),\rho(y))} \leqslant \varphi_{\rho\rho(x)} = \varphi_{\rho(x)}$

 $\varphi_{p\beta(p(x),p(y))} \leq \varphi_{pp(y)} = \varphi_{p(y)}$

 $\phi_{\rho\beta(\rho(x),\rho(y))}$ — наибольшая нижняя грань, действительно, если

 $\varphi_{p(z)} - \varphi_{p\beta(p(x),p(y))} & \varphi_{p(z)} \leq \varphi_{p(x)} & \varphi_{p(z)} \leq \varphi_{p(y)}$

для некоторого г, то

 $\varphi_{\rho(z)} \leq \varphi_{\beta(\rho(x),\rho(y))} = \Rightarrow \varphi_{\rho(z)} = \varphi_{\rho(z)} \leq \varphi_{\rho\beta(\rho(x),\rho(y))}$

значит:

 $\varphi_{\rho(z)} = \varphi_{\rho\beta(\rho(x),\rho(y))}$

2) Пусть $\varphi_{\rho(x)}$, $\varphi_{\rho(y)}$ $\in \sigma$ и совместны, тогда

 $\varphi_{\rho(x)} \leq \varphi_{\bullet(\rho(x),\rho(y))}$

 $\mathfrak{P}_{\rho(y)} \leq \mathfrak{P}_{\alpha(\rho(x),\rho(y))}$

поэтому,

 $\varphi_{pp(x)} = \varphi_{p(x)} \leqslant \varphi_{pa(p(x),p(y))}$

 $\varphi_{pp(y)} = \varphi_{p(y)} \leqslant \varphi_{pa(p(x),p(y))}.$

Предположим, что для некоторого г

 $\varphi_{p(z)} \ge \varphi_{p(x)} \& \varphi_{p(z)} \ge \varphi_{p(y)} \& \varphi_{p(z)} \le \varphi_{pa(p(x),p(y))}$

тогда $\varphi_{p(z)} \geqslant \varphi_{\beta(p(x),p(y))}$, отсюда:

 $\varphi_{pp(z)} = \varphi_{p(z)} \geqslant \varphi_{p\beta(p(x),p(y))}$,

значит:

 $\varphi_{p(z)} = \varphi_{p,p(p(x),p(y))}$

Следствие 1) Всякое конечное семейство из в имеет точную нижнюю грань

Доказательство. Очевидно.

Следствие 2) Если ретракт в из **К** имеет наибольший элемент, то в дистрибутивная решетка.

Доказательство. В ретракте с наибольшим элементом все элементы попарно совместны.

Следствие 3) Всякий ретракт $s = \{\varphi_{p(x)}\}_{x \in N}$ из K имеет наименьший элемент.

Действительно $\forall_x [\Phi \leqslant \varphi_x] := \forall_x [p(\Phi) \leqslant \varphi_{p(x)}]$ (в силу монотонности р). Где Φ —нигде не определенная функция.

Следствие 4). σ — вполне перечислимый ретракт $K \leftarrow \Rightarrow \sigma$ f — подмножество K (2), (4).

Доказательство. Очевидно.

Определение. Вычислимое подмножество $\{\varphi_{f(x)}\}_{x\in N}$ ч. р. ф. из Kсовместным выполнено пазовем условне если

$$\forall z \forall y \left[\exists x \left[\varphi(y) = z\right] = \rightarrow \forall u \forall v \left[\varphi(y) = v = \rightarrow v = z\right]\right]$$

Замечание. Семейство всех K — вычислимых подмножеств из Kимеет универсальную нумерацию. Эта нумерация главная и полная. Такой нумерацией является произвольная универсальная ч. р. ф. для класса всех двуместных ч. р. ф. Обозначим ее через K^2 .

Лемма. Семейство всех вычислимых совместных подмножеств из K есть n-подмножество K^2 (2).

Доказательство. Пусть $K^3(z,x,y) = \varphi_{f(z,x)}^{(y)}$ универсальная функ-

ция Клини. Обозначим через $K(z, x, y, t) = \varphi_{f(z,x)}^{t}(y)$, где $\varphi_{f(z,x)}(y) =$ $= \bigcup_{z \in N} \varphi_{z,x}^{z}(y).$

Определим ч. р. ф.

Определим ч. р. ф.
$$\psi_{f(x,x)}(y) = \exp \left[\varphi_{f(x,x)}(y) - \exp(-\pi u) \right] = \exp \left[\varphi_{f(x,x)}(y) - \exp(-\pi u) \right] = \exp \left[\varphi_{f(x,x)}(y) \right]$$
 (*) не определена в противном случае.

Из построения $\psi(z, x, y, t) = \varphi_{h(x,z,t)}(y)$ видно, что при фиксиро z_0 и x_0 , вычислимая последовательность вложенных ч. р. ф. Пусть

$$\Psi_{\ell(z,x)}^{(y)} = \bigcup_{t \in \mathcal{N}} \varphi_{h(z,x,t)}(y)$$
 тогда:

 $\varphi_{f(z,x)}(y) = K^4(w_0,z,x,t) = \varphi_{g(z)}(x,y)$ для некоторой о. р. ф. g(z). Остается проверить, что g(z) определяет n — подмножество K^3 .

Во-первых, для всех $z \in N K^3(g(z), x, y)$ — совместная вычислимая последовательность.

Если $K^{3}(z_{0}, x, y)$ — совместная вычислимая последовательность, TO $K^3(g(z_0, x, y)) = K^3(z_0, x, y)$. Это легко следует из (*). Лемма доказана.

Теорема 2. Если $\sigma = |\gamma_{\rho(x)}|_{x \in N}$ ретракт K, то всякая совместная вычислимая последовательность из о имеет точную верхнюю грань в з.

Доказательство Пусть g(x) о. р. ф. из леммы. Тогда $K^{3}(g(x), p(y), z) = \psi(x, y, z)$ — нумерует все совместные вычислимые последовательности из о.

Определим о. р. ф. f(x) так:

$$\varphi_{f(x)}(z) = \begin{cases}
v & \text{если } \exists y [\psi(x, y, z) = v] \\
\text{не определена в противном случае.}
\end{cases}$$

Из определения f(x) следует, что

Ho $\psi(x, p(y), z) = \psi(x, y, z)$, поэтому:

-
$$\forall x \forall y [\psi(x, y, z) \leq \varphi_{p/(x)}(z)].$$

 $\varphi_{pf(x)}(z)$ — есть точная верхняя грань последовательности

для всех $x \in N$. Действительно, если это не так, то пусть для некоторых x_0 и u_0 выполнено условие:

$$\forall y [\varphi_{p(u_0)} \geqslant \psi(x_0, y, z) \& \varphi_{p(u_0)} \leqslant \varphi_{p/(x_0)}], \qquad (**)$$

тогда, (в силу того, что $\varphi_{f(x_0)}$ — точная верхияя грань для $|\psi(x_0,y,z)\rangle_{y\in N}$), имеем: $\varphi_{f(x_0)}\geqslant \varphi_{f(x_0)}$

Поэтому в силу монотонности р

$$\varphi_{pp(u_0)} = \varphi_{p(u_0)} \geqslant \varphi_{pf(x_0)}$$

BMECTE C (**) имеем: $\varphi_{p(u_0)} = \gamma_{p/(x_0)}$.

Теорема доказана.

Теорема 3. Конечное подмножество с из **К** является ретрактом **К** тогда и только тогда, когда с — нижняя полурешетка относительно включения графиков и всякая совместная пара из с имеет точную верхнюю грань в с.

Доказательство.

Необходимость следует из теоремы (1).

Достаточность. Пусть $\phi = |\phi_0, \dots \phi_n|$ и ϕ_0 наименьший элемент (в конечной нижней полурешетке есть такой). Выберем конечное множество чисел z_i^* (i, $j \le n$, $k \le 1$)

$$z_{ij}^{k} = \begin{cases} |\mathbf{p}_{i}(z) \neq \mathbf{p}_{j}(z)| & \text{если } \varphi_{i}, \ \varphi_{j} \text{ не совместны н } k = 0 \\ |\mathbf{p}_{z}[\varphi_{i}(z) = \varphi_{j}(z)] & \text{если } \varphi_{i}, \ \varphi_{j} \text{ совместны н } \varphi_{i} \cap \delta \varphi_{j} \neq \emptyset, \& k = 0 \end{cases}$$
 $|\mathbf{p}_{z}| = (-2) \cdot (-2) \cdot$

построим конечные функции | | | | так:

$$x_i(z) = \begin{cases} \varphi_r(z_{r,j}^k) \text{ если } \varphi_r \leq \varphi_i \& |z = z_{r,j}^k| \text{ существует для } k \in [0, 1] \end{cases}$$
 не определена в противном случае

Проверим следующие соотношения между элементами о и о'.

- a) 4 91
- б) и совместна с иј ← > 71 совместна с Фј
- B) $x_i \leq x_j \iff \varphi_i \leq \varphi_j$
- г) о' изоморфна э.
 - а) Из построения $z_{i,j}^{k}$ видно, что выполнено условие $\forall i, r, j, k | [\varphi \leq v \& z_{r,j}^{k} \in \circ \varphi_{r}] = \succ [\varphi_{r}(z_{r,j}^{k}) = \varphi_{i}(z_{r,j}^{k})] |$

поэтому ×1≤ Ф1.

b) = > Пусть x_i совместна с x_j но φ_i не совместна с φ_j и пусть $z' = z'_i = \mu_z |\varphi_i(z) \neq \varphi_j(z)|$, тогда $x_i(z') = \varphi_i(z')$ & $x_j(z') = \varphi_j(z')$, но мы предположили, что $\varphi_i(z') \neq \varphi_j(z')$, тогда $x_i(z') \neq x_j(z')$ т. е. x_i и x_j не совместны. A = A юбая подфункция φ_i совместна с любой подфункцией φ_j , в частности из а) x_i совместна с x_j .

B) => Γ I y C T b $x_i \leqslant x_i$, Π $\varphi_i \leqslant \varphi_i$.

Во-первых из б) и φ_j совместны. Поэтому достаточно рассмотреть случан, когда $\exists z'|z'=z'=z'=|\psi_z|z\in \delta\varphi_i$ $\delta\varphi_j$

Тогда $\varkappa_i(z')$ определена, но $\varkappa_i(z')$ не определена.

(Если $*_j(z')$ — определена, то для некоторой подфункции $\varphi_i \leq \varphi_i$, $*_j(z') = \varphi_i(z')$ значит $z' \in \circ \varphi_j$, но $z' \in \circ \varphi_j$. Противоречие). Поэтому $*_i \leq *_j$. Пришли к противоречию.

Пусть k'=0, тогда из (1) $\varkappa_i(z^0,j)=\varphi_r(z^0,j)$, а это означает, что φ но $\varphi_i\leqslant \varphi_j$, поэтому $\varphi_{r'}\leqslant \varphi_j$, тогда и для \varkappa_j выполнено условие из (1) для тех же r' и лоэтому $\varkappa_j(z')$ определена и $\varkappa_j(z')=\varphi_{r'}(z')=\varkappa_i(z')$, а это означает что $z'\in \delta \varkappa_j$ — противоречне.

Аналогично рассуждая при k'=1 опять придем к противоречию.

Значит $\phi_i \leq \phi_j = > x_i \leq x_j$.

г) Из свойств а), б), в) очевидным образом следует, что отображение g определенное: $g(x_i) = \varphi_i - u$ изоморфизм σ' и σ относительно порядка.

Построим теперь функцию ретракции для \mathfrak{s} . Пусть \mathfrak{p}_x^t конечная подфункция \mathfrak{q}_x построенная к шагу t.

Положим $\varphi_{\rho(x)}^t = \sup(\varphi_{i_1}, \ldots, \varphi_{i_k}),$

если $\sup(x_{l_1}, \ldots, x_{l_k}) \leq \varphi'_{l_k}$

Легко проверить, что p(x) функция ретракции для s. Теорема доказана.

Следствие. Если φ_e максимальный элемент σ такой, что $\varphi_e = \sup\{\varphi_i, \varphi_j\} \& \varphi_i \neq \gamma_e \neq \varphi_j, \ mo \ \sigma \setminus \varphi_e \ n \ - подмножество \ K, но не ретракт. Легко доказать.$

Вычислительный центр Академии наук Армянской ССР и Ереванского Государственного университета

2. U. UUUSPBUV

Կլինիի ճամաբակալված բազմության ռետբակաների մասին

Աշխատանքում դիտարկվում են րոլոր մասնակի ռեկուրսիվ ֆունկցիաների Կլինիի համարակալված բազմության ռետրակտների ընդհանուր հատկությունները։ Տրվում է վերջավոր ռետրակտների լրիվ նկարագրությունը։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

¹ И. А. Лавров, Алгебра и Логика, 13, № 6, 1974. ² Ю. Л. Ершов, Теория нумераций 1. НГУ, Новосибирск, 1969. ¹ Х. Роджерс, Теория рекурсивных функций и эффективная вычислимость, изд. «Мир», М., 1972. ⁴ Ю. Л. Ершов, Теория вумераций П. НГУ, Повосибирск, 1972.