ՀԱՅԿԱԿԱՆ ՍՍՀ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԴԵՄԻԱՅԻ ԶԵԿՈՒՅՑՆԵՐ ДОКЛАДЫ АКАДЕМИИ НАУК АРМЯНСКОЯ ССР

LXII 1976

УДК 547.485.6:591.481.1. «712.92»

виохимия

Г. Г. Бунятян

Окисление и восстановительное аминирование а- кетоглутаровой кислоты в митохондриях мозга белых крыс при старении в присутствии АДФ

(Представлено чл.-корр. АН Армянской ССР А. А. Галояном 9/11 1976)

В наших предыдущих исследованиях (1) было показано, что даже при создании оптимальных условий для процесса восстановительного аминирования а кетоглутаровой кислоты (в опытах с добавлением аммнака и АДФ) она, тем не менее, в основном подвергается окислению. Кроме этого, отмечалось, что добавление аммиака значительно повышает дыхание митохондриальной фракции (МФ) в присутствии а- кетоглутаровой кислоты (2-КГ) и АДФ (1). В связи с этим, представляло определенный интерес изучение процессов окисления и восстановительного аминирования с-КГ за счет эндогенного аммиака в присутствии АДФ.

Исследования проводили на МФ мозга 6-месячных, годовалых и α-ΚΓ 2-летних (старых) белых крыс. Интенсивность окисления определяли манометрическим методом Варбурга, суммарный аммнак (свободный аммиак+амидоазот глутамина) —видонзмененным микрометодом Зелигсона (2,3), а содержание глутаминовой кислоты (ГК) методом электрофореза на бумаге (4.6). а — КГ и АДФ использовали

в конечной концентрации 10 мМ и 2 мМ.

Как видно из табл. 1, АДФ не оказывает существенного влияния на дыхательную активность МФ. При использовании в качестве субстрата окисления а- КГ поглощение кислорода МФ заметно усиливается, однако в старческом возрасте оно менее выражено. АДФ значительно стимулирует окисления 2-КГ у животных всех возрастных групп. Но и в этом случае эффект АДФ менее выражен у старых животных. Так, уровень потребления кислорода у 6-месячных, годовалых н 2-летних крыс составляет 11,7; 9,35 и 8,33 мкмоль О2 соответственно.

В следующей серии экспериментов, результаты которых приведены в табл. 2, изучена интенсивность реакции восстановительного аминирования а-КГ в отсутствие добавленного аммиака в МФ мозга указанных возрастных групп. Приведенные результаты подтверждают

полученные нами ранее данные (6) относительно снижения способности МФ к образованию аммиака из эндогенных источников в мозгу старых животных. АДФ сам по себе несколько увеличивает продукцию аммиака у животных всех возрастных групп, в пределах 0,8 жкмоль/г

Таблица 1 Действие АДФ на интенсивность окисления аКГ (мимоль O2/г свежей ткани 30 минут) в МФ мозга белых крыс при старении.

BCT	Контроль	АД	Ф	α-K	Γ	а—КГ+АДФ		
Возраст		ние 02	разница с кент- ролем	поглоще- ние 02	разница с конт- ролем	ние 0 ₁	разница с АДФ	
6 месяцев	6,92 +0,3 2 (12)	7.09±0.36 (12)	÷0.17	11.52+0.4	+4.6	18.79±0.57 (1c)	+11.7	
1 год	7.65±0.18 p>0.05 (12)	7.57±0.27 p>0.1 (12)	-0.08	12,05±0,34 p>0.1 (12)	+4.4	16.92+0.24 p<0.01 (16)	+9.35	
2 года	6.54±0.92 p>0.05 (12)	6.47±0.23 p<0.01 (12)	- 0.07	10.46±0,31 p<0.01 (9)	+3.92	14.8±0.58 p<0.005 (12)	+8.33	

свежей ткани. Добавление одной α - КГ приводит к некоторому, а ее сочетание с АДФ—к более выраженному снижению уровня аммиака в течение всего исследуемого периода постнатального развития. Так, если у 6-месячных, годовалых и 2-летних животных количество аммиа-ка, использованное на восстановительное аминирование α -КГ, в отсутствие АДФ составляет соответственно: 0,54; 0,55 и 0,5 мкмоль, то в его присутствии—0,8; 0,72 и 0,86 мкмоль.

Убыль аммнака в опытах с а- КГ и особенно с а- КГ+АДФ можно объяснить вовлечением эндогенного аммиака в синтез ГК однако, как видно из приведенных данных, это уменьшение происходит в незначительных количествах и без заметных возрастных изменений. Об этом свидетельствуют результаты наших исследований по образованию ГК (табл. 3). В опытах с а- КГ+АДФ уровень ГК по сравнению с пробами, где присутствует один АДФ, несколько повышается, особенно в 6-месячном и годовалом возрасте, однако примерно тот же уровень ГК сохраняется и в опытах с одной а- КГ. Эти данные свидетельствуют о том, что, по-видимому, образование ГК из а- КГ в отсутствие добавленного аммиака происходит с незначительной интенсивностью, при этом АДФ не оказывает существенного влияния на этот процесс.

Приведенные данные показывают, что эндогенная ГК, как и в прежних наших исследованиях (7), при инкубации МФ утилизируется в заметных количествах. В старческом возрасте уровень ГК в митохондриях несколько снижается и ее утилизация менее выражена. АДФ сам по себе не оказывает особого действия на уровень ГК, отмечается лишь незначительное уменьшение ее содержания. При добавлении α-КГ

Таблица 2
Действие АДФ на интенсивность восстановительного аминирования 2- КГ
за счет эндогенного аммиака (мкмоль взота суммарного аммиака/г свежей ткани/40 минут) в МФ мозга белых крыс при старении.

	По инкубашш	После инкубации							
Возраст		Контроль		АДФ		a-KI		2-КГ⊹АДФ	
			разница		разница с контролем		разиния с контролем		разница с
6 меся- цев	0,88	2.57	+1,69	3.45 ±	+0.88	2.03 ±	- 0.54	2,65	-0.8
1 год	0.06 (9) 0.96	0.12 (9) 2.44	+1.48	0.06 (9) 3.32	0.88	0.11	-0.55	0.1 (9) 2.6	-0.72
2 года	± 0.12 p>0.1 (9) 0.93	0.88 p>0.1 (9) 2.0	+ 1.07	0.04 p>0.1 (9) 2.81	10.8	0.13 p>0.1 (9)	-0.5	0.12 p>0.1 (9) 1.95	-0.86
	0.1 p>0.1 (9)	0.09 p<0.01 (12)		0.09 p<0.001 (12)		0.06 p<0.025 (12)		0.08 p<0.005 (12)	

Таблица З Действие АДФ на синтез ГК (мкмоль/г свежей ткани/40 минут) путем восстановительного аминирования а -КГ за счет эндогенного аммиака в МФ мозга белых крыс при старении.

		После инкубации							
Возраст	До инкубации	Контроль		АДФ		æ-KГ		α-КГ÷АДФ	
			разница		разница с контролем		разница с иситролем		разлина с
6 меся- цев	1.6 ± 0.07 (16) 1.73	0.56 0.03 (16) 0.66	-1·04 -1·07	0.46 ().02 (16) 0.51	-0·1 -0·26	± _{0.06}	+0.58	1.12 -0.04 (12) 1.2	+0.69
2 года	0.08 p>0.1 (16) 1.38 0.06 p<0.005 (16)	0.03 p<0.05 (16) 0.64 0.03 p>0.1 (16)	-0.74	0.03 p>0.1 (16) 0.5 + 0.01 p>0.05 (16)	-0.1	0.05 p<0.05 (16) 1.07 + 0.04 p<0.025 (16)	+C+43	0.05 p>0.1 (16) 1.08 0.05 p>0.05 (16)	-0.58

уровень ГК заметно повышается, это явление менее выражено в старческом возрасте (табл. 3).

Таким образом, регулирующее действие АДФ на окисление и восстановительное аминирование α - КГ особенно проявляется при нагрузках—добавлении α - КГ и аммиака (¹). В старческом возрасте отмечается заметное снижение эффекта АДФ на эти процессы. Приведенные данные и результаты, полученные нами ранее (¹), позволяют заключить, что АДФ имеет важное значение не только в регуляции окислительного деаминирования ГК (6), но и в окислительных превращениях α -КГ и ее восстановительном аминировании, что особенно важно в старческом возрасте, когда интенсивность метаболических процессов заметно снижается.

Институт биохимии Академии наук Армянской ССР

Գ. Հ. ԲՈՒՆՅԱ₽ՑԱՆ

a-կետոգլուտաբաթթվի օքսիդացումը և նբա ամինացումը սպիտակ առնետների ուղեղի միտոքոնդրիաներում ծերացման ժամանակ ԱԳՖ-ի ներկայությամբ

ԱԴՖ-Ն զգալի չափով խթանում է դ- կնտոգլուտարաթթվի (α-49 օքսիդացումը և նրա ամինայումը վեց ամսական, մեկ տարեկան և նրկու տարեկան (ծնր) սպիտակ առնետների ուղեղի միտոքոնդրիալ ֆրակցիայում ամոնիակի էնդոգեն քանակների դեպքում։

Բերված տվյալները թույլ են տալիս եզրակացնելու, որ ԱԴՖ-ն ունի էական նշանակություն «ԿԳ-ի փոխանակության մեջ ուղեղի միտոքոնդրիաներում՝ հատկապես ծեր հասակում, երբ նյութափոխանակության պրոցեսների ակտիվությունը նկատելիորեն նվաղում է։

ЛИТЕРАТУРА— ԳՐԱԿԱՆՈՒԹՅՈՒՆ

1 В. А. Шагинян, Г. Г. Бунятян и Г. В. Априкян, ДАН Арм. ССР. т. LXII, №3 (1976)

2 D. Seligson, H. Seligson, J. Lab. Clin. Med., 38, 324 (1951). 3 А. Н. Силакова, Г. П. Труш и А. Явилякова, Вопросы медицинской химин, 5, 538 (1962). 4 W. Grassmann, E. Hanning and M. Plöckl, Zell. Physiol Chem., 299, 258, 1955. 5 Г. Х. Бунятин и Г. В. Априкян, Вопросы биохимин, изд. АН Арм. ССР, 2, 5 (1961). 6 Г. В. Априкян и В. А. Шагинян, Вопросы биохимин мозга, изд. АН Арм. ССР, 8, 91 (1973). 1 Г. В. Априкян, Г. Х. Бунятин и В. А. Шагинян, Вопросы биохимин мозга, изд. АН Арм. ССР, 6, 67 (1970).