LXII

1976

УДК 5194

МАТЕМАТИКА

Ю. М. Мовсисян

К теории гомоморфизмов универсальных алгебр

[Представлено чл.-корр. АН Армянской ССР Р. А. Александряном 30/111 1976]

1. В работах ($^{1-2}$) вводится новое определение гомоморфизма и развивается соответствующая теория универсальных алгебр. О многих сходствах и отличиях возникающей при этом теории по сравнению с обычной теорией универсальных алгебр упомянуто нами (2). Настоящая работа является продолжением этих работ. Параллелизм между обычной теорией универсальных алгебр и той теорией, которая возникает при новом подходе определения гомоморфизма далеко не полный. И здесь мы замечаем ряд специфичных ситуаций, связанных с новым определением гомоморфизма. Отметим лишь один из них. Как и в обычной теории универсальных алгебр (3), ядра новых гомоморфизмов являются конгруэнциями. Обратное утверждение в обычной теории универсальных алгебр, как известно, также верно: каждая конгруэнция является ядром некоторого гомоморфизма. Однако, при новом определении гомоморфизма, на некоторых алгебрах, оказывается существуют такие конгруэнции, которые не являются ядрами подходящих гомоморфизмов. В связи с этим возникает понятие ядерной конгруэнции.

Под словом «алгебра» в дальнейшем подразумевается универсальная алгебра.

2. Если $D = \langle Q; \Sigma \rangle$ — алгебра, то арность операции $A \in \Sigma$ обозначается обычным путем |A|. Тип алгебры D определим как множество:

$T = \{ |A| | A \in \Sigma \}.$

Например, тип кольца, по нашему определению, есть множество [2]. Алгебры D и D' называются однотипными, если они имеют равные типы. Если тип алгебры равен T, то ее будем еще называть T — алгеброй. Алгебру $D' = \langle Q'; \Sigma' \rangle$ будем называть подалгеброй T — алгебры $D = \langle Q \rangle$ и писать $D' \leqslant D$, если $Q \subseteq Q \rangle \subseteq Q' \subseteq Q'$ и $Q' \in Q'$ является $Q' \in Q'$ и $Q' \in Q'$ и Q'

$$D = D' \longleftrightarrow Q = Q', \Sigma = \Sigma'.$$

Класс всех подалгебр одной и той же алгебры (включая быть может пустое множество) образует полную решетку относительно частичного порядка "≪".

Теорема 1. Полная решетка всех подалгебр каждой алгебры является компактно-порожденной (определение см. в (1)).

Подалгебры вида $<Q';\Sigma>$ алгебры $<Q;\Sigma>$ будем называть главными подалгебрами. Класс всех главных подалгебр одной и той же алгебры также образует полную решетку.

Теорема 2. Полная решетка главных подалгебр каждой алгебры является компактно-порожденной.

Справедливо и обращение этого утверждения.

Теорема 3. Каждая полная компактно-порожденная решетка изоморфна решетке главных побалгебр некоторой алгебры.

Следствие. Каждая полная компактно-порожденная решетка вкладывается в решетку всех подалгебр некоторой алгебры.

Если

$$\mathcal{M}_D = \{ \langle Q_l; \Sigma_j \rangle | i \in I, j \in J \}$$

есть класс всех подалгебр алгебры $D = < Q; \sum >$, то совокупности

$$M_Q = |Q_I|i \in I$$

$$M_Z = |\Sigma_I|j \in J|$$

являются полными решетками относительно теоретико-множественного включения. Эти решетки соответственно называются первой и второй решеткой подалгебр алгебры D. Понятно, что решетка главных подалгебр вкладывается в первую решетку подалгебр, а вторяя решетка подалгебр всегда вкладывается в решетку всех подалгебр заданной алгебры.

Теорема 4. Первая и вторая решетка подалгебр каждой алгебры является компактно-порожденной. Вторая решетка подалгебр Му каждой алгебры является подрешеткой в решетке всех частей множества Σ .

3. Перейдем, теперь, к понятию гомоморфизма.

Пусть $D = \langle Q; \Sigma \rangle$ и $D' = \langle Q'; \Sigma \rangle$ две однотипные алгебры. Упорядоченная пара (φ, ψ) отображений $\varphi: Q \rightarrow Q$, $\psi: \Sigma \rightarrow \Sigma$ называется гомоморфизмом из алгебры D в алгебру D и обозначается (φ, ψ) : $D \Longrightarrow D'$, если отображение ψ сохраняет арность операций и для любых $A \in \Sigma$, |A| = n и $x_1, \ldots, x_n \in Q$ справедливо равенство:

$$\varphi[A(x_1,\ldots,x_n)]=[\psi A](\varphi x_1,\ldots,\varphi x_n).$$

Пара (є, є) тождественных отображений є: $Q \rightarrow Q$, є: $Z \rightarrow Z$ есть гомоморфизм алгебры D в себя.

Пара $< \varphi Q$; $\psi \Sigma >$ является подалгеброй алгебры D' и называется гомоморфным образом алгебры D.

Если пары $(\varphi, \psi): D \Longrightarrow D_1$ и $(\lambda, \mu): D_1 \Longrightarrow D'$ являются гомоморфизмами, то пара отображений $(\varphi\lambda, \psi\mu)$ есть гомоморфизм $D \Longrightarrow D'$ и она называется произведением гомоморфизмов (φ, ψ) и (λ, μ) . Таким образом, алгебры и их гомоморфизмы (в качестве морфизмов) образуют категорию.

Гомоморфизм алгебры в себя называется ее эндоморфизмом. Множество всех эндоморфизмов одной и той же алгебры образует полугрупиу с единицей.

Эндоморфизм вида (Ф, в) называется главным эндоморфизмом. Совокупность всех главных эндоморфизмов образует полугруппу с единицей.

Теорема 5. Каждая полугруппа с единицей изоморфна полугруппе главных эндоморфизмов подходящей алгебры.

Следствие. Каждая полугруппа с единицей вкладывается в полугруппу всех эндоморфизмов некоторой алгебры.

Если

End
$$D = |(\varphi_i, \psi_j)| |i \in I, i \in J|$$

есть полугруппа всех эндоморфизмов алгебры $D=<Q; \Sigma>$, то совокупность

End
$$Q = |\varphi_i| i \in I$$

образует полугруппу с единицей и называется первой полугруппой эндоморфизмов алгебры D. Аналогично, совокупность

End
$$\Sigma = |\bar{\psi}_j| j \in J$$

называется второй полугруппой эндоморфизмов.

Теорема 6. Полугруппа главных эндоморфизмов вкладывается в первую полугруппу эндоморфизмов и

$$End D = End Q \times End \Sigma$$

тогда и только тогда, когда $End \sum$ —одноэлементна.

Следствие. Каждая полугруппа с единицей вкладывается в первую полугруппу эндоморфизмов некоторой алгебры.

Гомоморфизм (φ , ψ) называется эпиморфизмом, если отображения φ , ψ сюръективны и мономорфизмом, если отображения φ , ψ инъективны. Изоморфизм — это одновременно эпи- и мономорфизм. Изоморфизм алгебры в себя называется ее автоморфизмом. Множество всех автоморфизмов одной и той же алгебры D образует группу

Aut D. Автоморфизм вида (с. в) называется главным автоморфизмом, их совокупность также образует группу.

Теорема 7. Каждая группа изоморфна группе главных автоморфизмов некоторой алгебры.

Следствие. Каждая группа вкладывается в группу всех автоморфизмов некоторой алгебры.

Множество всех обратимых элементов первой полугруппы эндоморфизмов называется первой группой автоморфизмов алгебры и обозначается через Aut Q. Аналогично определяется и обозначается вторая группа автоморфизмов. Понятно, что группа главных автоморфизмов вкладывается в первую группу автоморфизмов.

Теорема 8. Группа главных автоморфизмов является нормальным делителем во всей группе автоморфизмов и

$$Aut D = Aut Q \times Aut \Sigma$$

тогда и только тогда, когда Аиt \Sigma — одноэлементна.

Следствие. Каждая группа вкладывается в первую группу авто-морфизмов некоторой алгебры.

Для последнего результата справедлива и двойственная формулировка, т. е. каждую группу можно вложить и во вторую группу автоморфизмов некоторой алгебры. Мы хотим сформулировать этот результат в более сильном варианте.

Теорема 9. Каждая группа одновременно вкладывается как в первую, так и во вторую группу автоморфизмов подходящей алгебры.

С каждым гомоморфизмом (\mathfrak{P}, ψ): $D \Longrightarrow D'$ связана пара отношений эквивалентностей r и t, определенная соответственно на множествах Q и Σ алгебры $D = \langle Q; \Sigma \rangle$. При этом:

$$xry \leftarrow \varphi x = \varphi y, x, y \in Q.$$

$$AtB \iff \psi A = \psi B, A, B \in \Sigma.$$

Упорядоченная пара (r,t) называется ядром гомоморфизма (φ,ψ) и обозначается через $Ker(\varphi,\psi)$.

4. Пусть $D = \langle Q; \Sigma \rangle$ — произвольная алгебра, а r и t — некоторые отношения эквивалентности, определенные соответственно на множествах Q и Σ Упорядоченную пару (r,t) назовем конгруэнцией алгебры D, если:

а) из отношений
$$x_1 r x_1$$
, $x_m r x_m$ следует $A(x_1, \ldots, x_m) r A(x_1, \ldots, x_m)$ где, $x_i, x_i \in Q$, $A \in \Sigma$, $|A| = m$,

б) из отношения
$$A t B$$
 следует $|A| = |B|$ и

$$A(x_1, \ldots, x_n)$$
 $rB(x_1, \ldots, x_n)$ для любых $x_1, \ldots, x_n \in Q$, где A , $B \in \Sigma$, $|A| = n$.

Нулевая конгруэнция определяется как пара (0,0), где:

$$x0y \iff x = y, x, y \in Q,$$

$$A0B \iff A = B, A, B \in \Sigma.$$

Единичная конгруэнция определяется как пара (1,1), где:

$$x \mid y \iff x, y \in Q,$$

$$A \mid B \iff |A| = |B|, A, B \in \Sigma.$$

Нетрудно проверить, что ядро любого гомоморфизма является конгруэнцией.

Пусть $q_1 = (r_1 t_1)$ и $q_2 = (r_2, t_2)$ две конгрузиции некоторой алгебры, определим:

$$q_1 \leq q_2 \prec = \succ r_1 \leq r_2, \ \tilde{t_1} \leq \tilde{t_2}.$$

Класс всех конгруэнций, определенных на одной и тои же алгебре образует полную решетку относительно частичного порядка <

Теорема 10. Полная решетка всех конгрузнций каждой алгебры является компактно-порожденной.

Если

$$L_D = \{(r_i, t_j) | i \in I, j \in J\}$$

есть класс всех конгруэнций алгебры D, то совокупности

$$L_0 = |r_i|i\in I$$

$$\text{II } L_2 = |t_j|j\in J$$

также образуют полные решетки. Решетки L_Q и L_z называются соответственно первой и второй решеткой конгруэнций алгебры D=<0

Теорема 11. Первая и вторая решетки когруэнций каждой алгебры являются компактно-порожденными.

Справедливо и обратное утверждение.

Теорема 12. Каждая полная компактно-порожденная решетка изоморфна первой решетке конгруэнций некоторой алгебры.

Существует и другая характеристика первой и второи решетки конгрузнций. А именно справедлива следующая.

Теорема 13, Первия решетки конгруэнций L_Q является поорешеткой в решетке всех эквивалентностей множества Q. Втори решетка L_L является подрешеткой в решетке всех эквивалентностей множества Σ .

Пусть q=(r,t) есть конгрузнция алгебры $D=\langle 0,\Sigma \rangle$. Элементы фактор-множества $\Sigma/\tilde{t}=\overline{\Sigma}$ можно трактовать как операции, определенные на фактор-множестве $Q/r=\overline{Q}$ следующим путем:

$$\overline{A}(\overline{x_1,\ldots,x_n})=\overline{A(x_1,\ldots,x_n)}.$$

где $\overline{A} \in \overline{\Sigma}, |A| = n, \overline{x_1}, \dots, \overline{x_n} \in \overline{Q}.$

Корректность определения операции \overline{A} следует из определения конгруэнции. Таким образом, определена алгебра $< Q/r; \Sigma/t>$, называемая фактор-а.. геброй алгебры D по конгруэнции q и обозначается как D/q.

Фактор-алгебра T—алгебры есть T—алгебра.

Пара (ϕ_*, ψ_*) отображений $\phi_*: x \longrightarrow \overline{A}$: $A \longrightarrow \overline{A}$ является эпиморфизмом $D \Longrightarrow D/q$. Он называется естественным гомоморфизмом.

Теорема о гомоморфизмах. Если (a,b):D-D' есть эпиморфизм и Ker (a,b)=q, то существует изоморфизм (b,a):D'-D' о существует изоморфизм (b,a):D'-D' такой, что коммутативна следующая диаграмна:

$$(\varphi_{2}, \psi_{3}), \stackrel{(\varphi_{3}, \psi_{3})}{\longrightarrow} D' = D'$$

$$D/q$$

5. Как уже было отмечено, ядро (r, t) любого гомоморфизма является конгруэнцией. Обратное уверждение однако не верно, т. е. существуют конгруэнции не являющиеся ядрами подходящих гомоморфизмов. Рассмотрим пример алгебры $\langle Q; \sum \rangle$, для которой отображение $A \rightarrow |A|$ не является инъекцией. Пара q = (1, t), где t < 1, является конгруэнцией алгебры $\langle Q; \sum \rangle$ хотя понятно, что она не может быть ядром для некоторого гомоморфизма.

В связи с этим конгруэнцию q = (r, t) будем называть ядерной, если она является ядром некоторого гомоморфизма. Для каждой алгебры нулевая и единичная конгруэнции являются ядерными. Существует такая алгебра, которая не обладает другими ядерными конгруэнциями, кроме нулевого и единичного. Например, алгебра Q: Σ , где Σ —класс всех унарных операций определенных на множестве Q. Напротив, существуют и алгебры, каждая конгруэнция которого ядерна. Этим свойством обладает, например, каждын группонд.

Теорема 14. Конгруэнция q = (r, t) алгебры $D = \langle Q; \Sigma \rangle$ является ядерной тогда и только тогда, когда она является ядром естественного гомоморфизма $(\varphi, \psi): D = \triangleright D/q$.

Пусть S — некоторое множество и Θ — некоторое отношение эквивалентности этого множества. Если $H \subseteq S$, то его Θ — замыкание обозначим через |H| = S

 $[H]\Theta = \{a \in S \mid a\Theta h \text{ для некоторого } h \in H\}.$

Ограничение отношения В на подмножестве H будем обозначать через Ви

Если $D'=<Q'; \Sigma'>$ есть подалгебра алгебры $D=<Q; \Sigma>$ и q=(r,t) — конгруэнция алгебры D, то нетрудно проверить, что пара $<[Q']\,r; |\Sigma'|\,t>$ является подалгеброй алгебры D и пара <rap constraints - конгруэнцией подалгебры D'. Подалгебру $<[Q']\,r |\Sigma'|\,t>$ обозначим через $[D']\,q$, а конгруэнцию $<\!r_{Q'}, t_{\Sigma'}\!>$ —через $q_{D'}$.

Первая теорема об изоморфизмах, Если D'-подалгеб- ра алгебры D и q-конгруэнция алгебры <math>D такая, что |D'|q=D то алгебры D/q и D'/q_D изоморфны.

Пусть $D = \langle Q \rangle \sum$ произвольная алгебра и q = (r, t) —ядерная конгруэнция алгебры D. Рассмотрим произвольную конгруэнцию $\phi = (e, s)$ алгебры D такую, что $q \leqslant \phi$. Определим бинарные отношения e/r и s/t соответственно на множествах Q/r и \sum /t следующим путем:

$$\overline{x} e | r \overline{y} \iff x l y, x, y \in Q, \overline{x}, \overline{y} \in \overline{Q}.$$

$$\overline{A} s | \overline{t} \overline{B} \iff A s B, A, B \in \Sigma, \overline{A}, \overline{B} \in \Sigma.$$

Из ядерности конгруэнции q следует, что отношения e/r и s/t определены корректно и нетрудно проверить, что пара $\langle e/r, s/t \rangle$ является конгруэнцией на фактор-алгебре D/q. Конгруэнция $\langle e/r, s/t \rangle$ обозначается через ϕ/q .

Вторая теорема об изоморфизмах. Если q и ϕ такие ядерные конгрузнции алгебры D, что $q < \phi$, то алгебры D/ϕ и $D/q/\phi/q$ изоморфны.

Ереванский государственный университет.

Ունիվեսալ հանբանաշիվների հոմոմորֆիզմների տեսության շուրջը

Հեղինակի (²) աշխատանքներում ներմուծվել է հոմոմորֆիզմի նոր սահմանում և ղարգացվել ունիվեսալ հանրահաշիվների համապատասխան տեսություն։ Ներկա հոդվածը հանդիսանում է ² աշխատանքների շարունակությունը։ Հոդվածում ուսումնասիրվում են՝

1. Ունիվերսալ հանրահաշվի ավտոմորֆիզմների առաջին, երկրորդ և

գլխավոր խմբերը։

2. Ունիվերսալ հանրահաշվի էնդոմորֆիզմների առաջին, երկրորդ և գլխավոր կիսախմբերը։

3. Ունիվերսալ հանրահաշվի կոնգրուենցիաների առաջին և երկրորդ ստրուկտուրաները։

4. Ունիվևրսալ հանրահաշվի միջուկային կոնգրուննցիաները։

Հետաղոտությունների բոլոր այս ուղղություները կապված են Հոմոմորֆիղի նոր սահմանման հետո

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

¹ Ю. М. Мовсисян, «Научный работинк ЕГУ», № 18, 3—11, 1973. - Ю. М. Мовсисян «Известия АН Арм. ССР», сер. «Математика», № 5, 1976. ³ П. Кон, Универсальная алгебра, «Мир», 1968. ⁴ А Г. Курош, Общая алгебра, «Наука», 1974.