ГОКЛАДЫ АКАДЕМИИ НАУК АРМЯНСКОЯ ССР

LXI 1975

MATEMATHKA

УДК 517.54

Ю. Ф. Коробейник, Б. А. Слакян

К вопросу о представлении — абсолютно-монотонных функций

(Представлено вкадемиком АН Армянской ССР М. М. Джрбашчины 10/VII 1975)

§ 1. Бесконечно-дифференцируемая в промежутке [0, 1] функция называется абсолютно-монотонной в этом промежутке, если, $f^{(h)}(x) \geqslant 0$, $\forall k \geqslant 0$, $\forall x \in [0, 1)$. Согласно результату С. Н. Бернштейна (1) совокупность всех абсолютно-монотонных на [0, 1) функций совпадает с множеством сужений на [0, 1) всех аналитических в единичном круге функций с неотрицательными тейлоровскими коэффициентами, то есть с функциями вида

$$\varphi(x) = \sum_{n=0}^{\infty} a_n x^n, \ a_n \geqslant 0, \ \overline{\lim} \ |a_n|^{\frac{1}{n}} \le 1, \ 0 \le x \le 1.$$

Понятие абсолютно-монотонной функции обобщалось в различных направлениях ($^{8-4}$). В частности, в работе (4) введено довольно общее понятие $\langle p_j \rangle$ — абсолютно-монотонной функции и изучен вопрос о представлении такой функции. При этом существенно использовались операторы дробного интегрирования и дифференцирования, теория которых получила широкое развитие и применение в работах М. М. Джрбашяна и его учеников (см., например, монографию (5).

В пастоящей заметке получены теоремы об общем виде — абсолютно-монотонных функций в случае $\sum_{j=1}^{n} \frac{1}{\rho_j} = +\infty$; эти теоремы имеют такой же законченный характер, как и для обычных абсолютно-монотонных функций. В статье используются обозначения, определения и результаты работы (4).

§ 2. Леммя 1. Пусть — произвольния последовательность неотрицательных чисел, имеющих предел — где $0 < 1 \le +\infty$. Пусть, далее, a_n — неотрицательные числи, $0 < l \le +\infty$. Следующие два утверждения равносильны:

1) для любого х из промежутка [0, 1) сходится ряд

$$\sum_{n=0}^{\infty} a_n x^{n} x^{n}; \tag{1}$$

2) для любого $x \in [0, 1)$ сходится ряд

$$\sum_{n=0}^{\infty} a_n \lambda_n x^{\lambda_n} \tag{2}$$

Доказательство. Если $I_{+} = +\infty$, то $\forall n \geq N$, $\forall x \in [0, I)$

$$\frac{1}{2}a_n x' n \leq a_n L_n x' n \quad 2L_n a_n x' n.$$

Отсюда видно, что ряды (1) и (2) сходятся или расходятся одновременно при $x \in (0, l)$ (в точке x = 0 оба ряда сходятся, так как $(0)^{\lambda_n} = 0$. $\forall n > N_1$).

Пусть теперь $h_n = +\infty$. Так как $\lim_{n \to +\infty} xq^n = 0$, если $q \in (0, 1)$, то $\lim_{n \to +\infty} a_n = 0$, $\forall q \in (0, 1)$. Очевидно, что $a_n h_n x^n = a_n x^n$, $\forall n \in \mathbb{N}$, и из сходимости ряда (2) в какой-нибудь точке $x \in [0, l)$ следует сходимость ряда (1) в той же точке.

Пусть теперь ряд (1) сходится в промежутке [0, l) Возьмем любое $x_1 \in [0, l)$, а затем—произвольное $x_2 \in (x_1, l)$. Тогда $\forall n > N_3$

$$a_n h_n X_1^{\lambda_n} = a_n X_2^{\lambda_n} h_n \left(\frac{X_1}{X_2}\right)^{\lambda_n} = a_n X_2^{\lambda_n} h_n q^{\lambda_n} < a_n X_2^{\lambda_n}$$

Отсюда следует, что ряд

$$\sum_{n=0}^{\infty} a_n L_n X_1^n$$

сходится, и лемма доказана.

Выясним теперь, при каких условиях на коэффициенты a_k ряд (1) сходится в промежутке $\{0,l\}$. Рассмотрим сначала случай, когда $\lim_{n\to\infty} -\infty$. В этом случае легко заметить, что ряд (1) сходитов в интервале (0,l) тогда и только тогда, когда сходится ряд $\sum_{n=0}^{\infty} a_n x^n$, то есть, когда сходится ряд

$$\sum_{n=0}^{\infty} a_n. \tag{3}$$

Пусть теперь $\lim_{n\to\infty} \lambda_n = +\infty$. Если $x\in(0,l)$ и ряд (1.1) сходится,

TO
$$\overline{\lim}_{n \to \infty} |a_n x^{n} n|^{n} = x \overline{\lim}_{n \to \infty} |a_n|^{n} = 1.$$

Поэтому для сходимости ряда (1) в (0, 1) необходимо, чтобы

$$\overline{\lim}_{n\to\infty}|a_n|^{\frac{1}{k_n}} \leq \frac{1}{l}.$$

При некоторых дополнительных предположениях на достаточно. Допустим, что

$$\lim_{n \to \infty} \frac{\ln n}{n} = 0. \tag{5}$$

Если выполняется условие (5), то с помощью логарифмического признака сходимости (см. например (*), упражнение 2615) получаем, что ряд $\sum_{n=0}^{\infty}$ сходится в промежутке [0, 1).

Пусть коэффициенты $\{a_k\}$ удовлетворяют условию (4), а числа $\{\lambda_k\}$ —условию (5). Возьмем произвольное x_1 из (0, ℓ), а затем $x_1 \in (x_1, \ell)$. Тогла из (4) следует, что $a_1 \in \left(\frac{x_1}{x_2}\right)^n$ для всех $n \geqslant N_1$, и

по признаку сравнения ряд $\sum_{n=0}^{\infty} a_n x_1^{\lambda_n}$ сходится. Сформулируем полученный результат:

Лемма 2. Пусть $l_n \ge 0$ и $\lim_{n \to \infty} l_n = l_n$, $0 < l_n < +\infty$. Пусть, далее, $0 < l_n + \infty$, $u_n \ge 0$, $n = 0, 1, 2 \dots$ Тогда для сходимости ряда (1) в промежутке [0, l)

- а) необходимо и достаточно, чтобы сходился ряд (3), если $-<+\infty$:
- б) необходимо, чтобы выполнялось условие (4), если 1. = -∞;
- в) необходимо и достаточно, чтобы выполнялось неравенство (4). если числа дл удовлетворяют условию (5).

§ 3. Положим $\rho_0 = 1$, $\rho_f \geqslant 1 \ (j \geqslant 1)$; $\ell_0 = 0$,

$$\lambda_n = \sum_{k=1}^n \frac{1}{\rho_k}, \ \lambda_n = \lim \lambda_n; \ 0 < l \le +\infty.$$

Обозначим символом $D(\langle \rho_j \rangle, l)$ класс всех $\langle \rho_j \rangle -$ абсолютно-монотонных на [0, l) функций. Комбинируя леммы 1 и 2 с теоремями 1 и 2 работы $(^4)$, получаем такие результаты:

Теорема 1. Если $\lambda_{-}=+\infty$, то класс D(<)>1) совнадает с множеством сумм всех сходящихся в промежутке $\{0,1\}$ рядов вида

$$\sum_{n=0}^{\infty} \frac{a_n}{\Gamma(1+\lambda_n)} x^{\lambda_n}, \quad a_n \ge 0 \tag{6}$$

При этом, если f(x) — сумма ряда (6), то $a_n = A_n f(0)$, $n = 0, 1, \ldots$ Теоремя 2. Пусть числа i_n удовлетворяют условию (5). Тогда класс D(< i > l) совпадает с совокупностью сумм всех рядов вида

$$\sum_{k=0}^{\infty} \frac{a_k}{\Gamma(1+\lambda_k)} x^{\lambda_k}, \ a_k > 0, \lim_{k\to\infty} \frac{|a_k| \Gamma_k}{\lambda_k} \le \frac{1}{le}, \ 0 \le x < l. \tag{7}$$

Заметим, что в случае $\lambda_n = n$ теорема II совпадает с результа-

том С. П. Бернштейна, о котором говорилось выше (см. § 1). В георемах I—II последовательность удовлетворяет условиям

$$t_0 = 0, \ 0 < t_{n+1} - t_n \le 1, \ \lim t_n = +\infty.$$
 (8)

Пусть теперь (рк) - произвольная последовательность, удовлетворяющая условиям

$$\mu_0 = 0, \ \mu_{k+1} > \mu_k, \ k = 0, 1, \dots; \ \text{IIm } \mu_k = +\infty.$$
 (9)

Дополним каким-инбудь способом последовательность $|\mu_k|$ до последовательности $|\lambda_3|$ так, чтобы выполнялись условия (8) (то есть, сгустим* последовательность $|\mu_k|$). Положим $p_n = \frac{1}{\lambda_n - \lambda_{n-1}}$, $n = 1, 2, \ldots$ и обозначим символом $D(\langle p_j \rangle, l, \mu_n)$ подкласс $D(\langle p_j \rangle, l)$, состоящий из всех тех функции f(z), для которых $A_n f(0) = 0$, если $\lambda_n = \{\mu_k\}_{k=0}^\infty$

Из теорем I-II легко получаем такой результат:

Теорема III. Пусть числа | и и удовлетворяют условиям (9) и | и произвольное пополнение | и и последовательности, удовлетворяющей условиям (8). Тогда:

а) класс $D(\langle \rho_j \rangle, l; \mu_n)$ совпадает с множеством суми всех сходящихся на [0,l) рядов вида (6), в которых $a_n = 0$, если $\lambda_n \in [\mu_k]_{k=0}$; (6) если числа — удовлетворяют условию (5), то класс $D(\langle \rho_j \rangle, l; \mu_n)$ совпадает с совокупностью всех рядов вида (7), в которых $a_n = 0$, когда $\lambda_n \in [\mu_m]_{m=0}^{\infty}$.

Пункт а) теоремы III является усилением ранее доказанных теорем I, 4 и I. 5 из диссертации (7).

Ростовский государственный университет Ерепанский государственный университет

ՑՈՒ Ֆ. ԿՈՐՈՐԵՅՆԻԿ, Բ. Հ. ՍԱՀԱԿՅԱՆ

—րացարձակ մոնոտոն ֆունկցիաների ներկայացման հարցի մասին

արիկ ֆունկցիանևրի |f(z)| = |0, 1| բազմության հետ։

JHTEPATYPA PPRURUMENTERNE

1 С. Н Бернштейн. Абсолютно-монотонные функции. Собрание сочинения, т. 35, 370—425, 1952. 2 S. Karlin and W. Studden, Tchebychell System with application in analyses and statics, Interscience, New York, 1966. 2 М. М. Джербашян. Б. А. Саакин, «Повестия АП СССР», серия матем., т. 39, № 1, 69—122, (1975) 6 1 Саакин, «Повестия АН АрмССР», сер. матем. 9, № 4, 285—307 (1974) 4 М. М. Джербашян. Питегральное преобразование и представления функции в комплексной областя, Изданача. М. 1966 6 П. Демидович, Сборник задач и упражнений по математическому анализу, ГНФМЛ М. 1958 6 1 Саакин. Разложения типа Теплора Маклорена некоторых классов обобщенно абсолютно-монотонных функций, канд. диес., Еренан, ЕГУ, 1975.