LX 1975

УДК 513

МАТЕМАТИКА

3

М. А. Акивис, А. В. Чакмазян

Об оснашенных подмногообразиях аффиниого пространства, допускающих параллельное нормальное векторное поле

(Представлено академиком АН Армянской ССР Л. Л. Шагиняном 2/11 1975)

I В работе (1) рассматриваются подмногообразия V_m n -мерного пространства постоянной кривизны, допускающие параллельное нормальное векторное поле Такие подмногообразия обладают рядом интересных геометрических свойств. Их частным случаем являются подмногообразия с параллельным полем векторов средней кривизны, которые интенсивно изучаются в последнее время (2).

В настоящей работе строится аффинное обобщение метрических результатов, полученных рапее (1). Мы изучаем здесь оснащенные подмногообразия V_m аффинного пространства A_n , допускающие параллельное нормальное векторное поле Оказалось, что строение таких многообразий тесно связано со строением тангенциально вырожденных многообразии и многообразий, несущих сопряженную систему, которые были изучены одним из авторов (1)

2. Рассмотрим m — мерное подмногообразне V_m , аффинного пространства A_n , оснащенное при помощи семейства (n-m) — мерных нормалей первого рода $N_{\mathcal{X}}$ (*). Присоединим к рассматриваемому поммногообразию аффинный ренер $(x.e_n),\ u=1,\cdots,n$, точка x которого совпадает с текущей точкой многообразия V_m . Уравнения инфинитезимального перемещения этого репера запишутся в виде

$$dx = \omega^{n} \mathbf{e}_{n}, \ d\mathbf{e}_{n} = \omega^{n} \mathbf{e}_{v}, \ (u, v, w = 1, \cdot \cdot \cdot \cdot, n) \tag{1}$$

в формы Пфяффа, входящие в эти уравнения, удовлетворяют уравнениям структуры группы аффинных преобразований

$$d\omega^{\mu} = \omega^{\mu} \wedge \omega^{\mu}_{er} \quad d\omega^{\mu}_{e} = \omega^{\mu}_{er} \wedge \omega^{\mu}_{er} \tag{2}$$

Поместим векторы $e_1(i=1,\cdots,m)$ подвижного репера в касательное пространство T_N мпогообразия V_m , а векторы $e_1(i=m+1,\cdots,n)$ будем считать принадлежащими его нормали N_i . Тогда на многообразии V_m формы и будут линенно независимыми и имеют место уравнения

$$-0, (3)$$

$$\omega_i^* = b_{ij}^* \omega_i^{l}, \qquad (4)$$

$$\omega_*^t = c_*^t \omega_*^t, \tag{5}$$

где — При этом урявнения (4) получаются при продолжении уравнений (3), и величины b^* образуют систему асимптотических тензоров подмногообразия V_m , а уравнения (5) вытекают из условия инвариантности оснащающей пормали N_X . Величины C^* также являются тензорами.

Формы и определяют аффинную связность в касательном расслоении $T_{\mathcal{K}}$ подмногообразия V_{m} Форма кривизны этой связности в силу уравнений (2), (4), (5) имеет вид:

$$dw_{j}^{i}-w_{j}^{k}\wedge w_{k}=b_{jk}^{n}c_{-l}^{i}w^{k}\wedge w_{-}^{l}$$

Отсюда следует, что тензор кривизны этой связности выглядит следующим образом:

$$R_{jkl} = b_{j|k} c_{|0|l|}. (6)$$

Формы w_{m}^{*} определяют связность и нормальном расслоении N_{x} подмногообразия V_{m} . Форма кривизиы этой связности в силу тех же уравнений имеет вид

$$d\omega_{i}^{q} - \omega_{i} \wedge \omega_{i}^{q} = c^{*}b^{*}\omega^{i} \wedge \omega^{j},$$

а ее тензор кривизны выглядит так:

$$R^{*}_{31} = c^{k}_{3[1} b^{*}_{[k]/]}, \tag{7}$$

Заметим, что если подмногообразие V_m является m-плоскостью, то h=0 и тензоры R^i_{jkl} , R^a_{ij} при любом оснащении этого подмного-образия обращаются в нуль. Если семейство нормалей N_{Δ} является абсолютно параллельным, то $c^i_{-i}=0$ и тензоры кривизны снова обращаются в нуль. В дальнейшем эти случай мы исключим из рассмотрения. Более того, в дальнейшем мы будем считать, что многообразие V_m является тангенциально невырожденным.

Семейство нормалей N_x образует конгруэнцию в A_n . Найдем фокальные образы (3) этой конгруэнции. Пусть $y = x + x^a e_a$ произвольная точка нормали N_x . Если эта точка является фокусом, то должно выполняться условие $dy \in N_x$. Отсюда вытекают соотношения

$$(\delta_j' + x^* c_j') \quad \omega_j = 0$$

Для того, чтобы эта система имела нетривиальное решение относительно ω^t , необходимо и достаточно, чтобы выполнялось условие

$$\det(\mathcal{E}' + x^* \, c'_j) = 0. \tag{8}$$

Это уравнение определяет фокусную поверхность, принадлежащую нормали $N_{\rm L}$, которая является алгебранческой поверхностью порядка m размерности n-m-1.

Отметим, что если тензор $c_{ij}^* = c_i c_{ij}^*$, то уравнение (8) принимвет ви і

$$x^{\circ} c_{\circ} + 1 = 0,$$
 (9)

то есть фокусная поверхность вырождается в m — кратную (n-m — 1) — плоскость. Нормали N_x образуют в этом случае связку, вершиной которой служит плоскость (9). Тензоры кривизны в этом случае имеют вид

$$R_{jkl}^i = c_k b_{jlk}^k \delta_{jl}^i, R_{kll}^n = 0.$$

3. Рассмотрим на многообразни V_m нормальное векторное поле $\mathbf{c} = \mathbf{e} \cdot \mathbf{e}$. Для этого поля имеем:

$$d = (d \hat{z}^* + \hat{z}^*) \mathbf{e}_* + \hat{z}^* \omega^i \mathbf{e}_i . \tag{10}$$

Выражение $D_i = (di^* + i \omega_j^*)e_i$ представляет собой ковариантный дифференциал векторного поля по отношению к связности, определенной нормальным расслоением. Поле : называется параллельным векторным полем, если $D_i = 0$.

Предположим теперь, что оснащенное подмногообразие V_m афинного пространства A_n допускает параллельное нормальное векторное поле. Тогда уравнения

$$dz^1 + z^2 \omega_0^2 = 0 \tag{11}$$

должны выполняться гождественно на V_m Дифференцируя внешним **Бб**разом эти уравнения, найдем

$$\partial \omega \wedge \omega^* = 0. \tag{12}$$

Введем тензор

$$c_i' = v_{3i}$$

и назовем его основным тензором параглельного нормального векпорного поля присоединенного к многообразию V_m . Теперь, в силу (4) и (5), соотношения (12) можно переписать в виде

$$c_i^*b_{ij}^* = c_j^*b_{ij}^* \tag{13}$$

Полагая $C = (c_i^i)$ и $B^i = (b_{ij}^i)$, это условие можно переписать в матричной форме

$$(B^{\circ} C)^{\circ} = B^{\circ} C, \quad (B^{\circ})^{\circ} = B^{\circ}.$$
 (14)

где в означает транспонирование матрицы

Условие (12), в силу (7) может быть также переписано в форме $R_{\rm h}=0$,

причем последнее соотношение выполняется тождественно на V_m . Это означает, что параллельное векторное поле в принадлежит ядру алгебры голономии связности, определяемой в нормальном расслоении многообразия V_m

Изучим теперь потробнее свойства нарадлельного нормального векторного поля многообразия V_m . Для этого докажем следующие теоремы.

Теорема 1. Семейство одномерных нормалей, определяемых параллельным векторным полем и образует тангенциально вы-рожденную поверхность V₂₁ размерности т + 1 ранга т.

Рассмотрим поверхность V_{m+1} , образованную нормалями $I_x = x \xi$ многообразия V_m . Пусть $y = x + \kappa \xi$ произвольная точка этой поверхности. В силу уравнений (11), дифференциал этой точки имеет вид:

$$dy = (\omega^i + i c^i \omega^j) \mathbf{e}_i + dr \cdot \bar{z}. \tag{15}$$

Отсюда ясно, что касательное подпространство поверхности $_{m-1}$ в точке у определяется векторами \mathbf{e}_i и і и не зависит от положения точки у на прямой $_{m-1}$ а зависит только от положения точки $_{m}$ на поверхности V_{m} . Поэтому V_{m+1} является тангенциально вырожденной поверхностью ранга m ($^{\mathfrak{d}}$).

В соответствии с работой (3) можно сказать, что оснащенное многообразие V_{m} , несущее параллельное векторное поле, допускает одномерную поднормализацию.

Многообразие V_m называется параллельным оснащенному многообразию V_m аффиниого пространства A_n , если касательная плоскость $T_{v'}$ к этому многообразию в точке $x' = N_x \cap V_m$ параллельна касательной плоскости T_x . Многообразие V_m является преобразованием Петерсона (*) многообразия V_m .

Теорема 2. Оснащенное многообразие V_m аффинного пространства A_n допускает параллельное нормальное векторное поле в тогои и только тогоа, когда существует параллельное ему многообразие V_m .

Предположим, что оснащенное многообразие V_m допускает нормальное векторное поле. Рассмотрим многообразие V_m описываемое точкой x = x c; где $c = {\rm const.}$ Тогда, в силу (11),

$$dx = (w^t + c\xi^* w^t) e_t,$$

то есть T_x параллельна T_{x} .

Обратно, пусть V_m^+ — многообразие, параллельное V_m^- в указанном выше смысле, описываемое точкой x . Так как точки x и x' ле-

жат в одной плоскости N_{x} , то x'=x-1 где $t=t^*$ е. Поэтому, в силу (10),

 $dx' = (\omega^l + \xi^* \omega^l)e\iota + D\xi^* e_{\bullet}.$

Но так как T_x параллельно T_x , то $D_x^*=0$ и поле ξ является параллельным полем.

4. Найдем фокусы образующей поверхности V_{m+1}^m , порожденной параллельным пормальным векторным полем нормализованного много-образия V_m . Точка у — $x+\lambda\xi$ будет фокусом образующей l_x , если вектор dy параллелен вектору ξ . Из соотношения (15) следует, что для фокусов имеют место уравнения

$$(s^i+ic^i)\omega^j=0.$$

Положим в этих уравнениях / = - - Тогда они перепицутся в виде

$$(c_1' - \mu b')\omega' = 0.$$
 (16)

Значения параметров μ , определяющие фокусы на образующей l_{x} , находятся из уравнения

$$\det (c^i - \mu \delta^i) = 0, \tag{17}$$

которое представляет собой характеристическое уравнение аффинора U_{l} . Образующая U_{l} несет столько различных фокусов, сколько различных собственных значений имеет аффинор c^{l} .

Пусть ра - собственное значение аффинора ср. Подставляя его в (16), мы получим систему уравнений для определения фокального

направления, соответствующего фокусу $f_1 = x - \frac{1}{n}$ E. Размерность это-

го фокального направления будет равна m - p, гле

$$\rho_1 = \operatorname{rang} (c_1^i - \mu_1 \lambda^i).$$

Фокальные направления определяют распределение Δ_1 размерности $m=\varrho_1$ на касательном расслоении T_x многообразия V_m .

Теоремя 3. Если основной аффинор c_l^1 параллельного нормального поля многообразия V_m имеет простую структуру, то геть приводится к диагональному виду, и имеет s различных собственных значений $\psi_1, \ \psi_2, \cdots, \psi_s$ кратности, соответственно равной $m_1, \ m_2, \cdots, m_s$ $(m_1 + \cdots + m_s = m)$, то многообразие V_m несет s — сопряженную систему распределений $\Delta_1, \Delta_2, \cdots, \Delta_s$ размерностей $m_1, \ m_2, \cdots, m_s$.

Приведем матрицу $C = (c^t)$ к диагональному виду и запишем ее в форме

$$C = \begin{pmatrix} C_1 & 0 & \cdots & 0 \\ 0 & C_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & C_n \end{pmatrix}.$$

гле $C_p = u_p e_p$ — скалярная матрица порядка $m_p (e_p$ — единичная матрица порядка m_p) и при $p \neq q$. Запишем матрицы B^* в блочной форме: $B^* = (B_{pq}^*)$, где B_{pq}^* — прямоугольная матрица порядка $m_p \times m_q$. Тогда соотношения (14) примут вид:

$$B_{pq}^{\circ}(\mu_q - \mu_p) = 0.$$

Отсюда следует, что $B_{pq}^* = 0$ при $p \neq q$ и матрицы B^* приводятся к блочно - днагональному виду

$$B = \begin{pmatrix} B_{11}^{*} & 0 & \cdots & 0 \\ 0 & B_{22}^{*} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & B_{23}^{*} \end{pmatrix}.$$

где B_{pp} — произвольные квадратные матрицы порядка m_p . А это означает (*), что многообразие V_m несет сопряженную систему, описанную в условии теоремы.

Теорема 4. При выполнении условий теоремы 3 сопряженные распределения Δ_p ($p=1,\cdots,s$), определение на касательном расслоении многообразия V_m , будут инволютивными

В самом деле, если $m_p=1$, то распределение Δ_p одномерно и, следовательно, инволютивно. Если $m_p>1$ то, как следует из (4), фокус f_p поверхности V_{m+1}^m , соответствующий этому распределению, будет оставаться неподвижным при перемещении точки $x\in V_m$ вдольлюбой линии, приналлежащей распределению Δ_p . При этом прямые xf_p опишут коническую поверхность размерности m_p+1 , которая пересечет многообразие V_m по m_p — мерной поверхности, огибающей распределение Δ_p .

Таким образом, сопряженная система, определяемая на многообразии V_m , допускающем пормальное поле параллельных векторов, при выполнении условий теоремы 3 будет слабо голономной (5).

Московский институт стали и сплавов Ереванский государственный педагогический институт им. Х. Абовяна

U. II. IIIIIIIII, II. I QILPURQBUL

Աֆինական տաբածության հագեցված ենթաբազմաձևություններ, որոնք թույլատրում են զուգանեռ նորմալ վեկտորների դաշտ

արդլուն ընտացված են հետևլալ արդյուն քները. $\{1\}$ աշխատան քում դիտարկվում է $\{1\}$ աշխատան քում կառուցված է $\{1\}$ աշխատանրաժություն ընկան և դաչաւ Ալա աշխատան քում կառուցվում է մետրիկական
արդյուն քների աֆինական ընդհանրացումը, որը ստացված է $\{1\}$ աշխատանրաժությենն արդինական և աշխատան քում կառուցված է $\{1\}$ աշխատան-

1. Մեկ չափանի նորմայների ընտանիքը որը որոշվում է զուզաներ է վեկտորների դաշտով, կազմում է տանգենցյալ վերածվող m + \ — չափանի և m ռանգով Vm_ բազմաձևություն։

ЛИТЕРАТУРА — ЭГЦЧЦЪПЪРЗЯВЪ

¹ К) Г. Лумисте, А. В. Чакмазин "Навестия высш. уч. завед". Математика, №5. 148—157, 1974. ² Chen Bung — yen. Geometry of submanifolds (Pure and Appl. Math., №22), New York, Marcel Dekker, 1973. ³ А. А. Акивис. "Навестия высш. уч. давед». Математика, № 1, 9—19, 1957. ⁴ М. А. Акивис. ДАН СССР, т. 146, № 3, 515—518 (1962). ⁵ М. А. Акивис. «Павестия высш. уч. завед» Математика», № 10, 3—11, 1970. ⁶ Г. Л. Нарден. Пространства аффикной связности. М.—Л., 1950. ⁷ Ю. Г. Лумисте «Учен. зан. Тартуск. ун-та», вып. 192, 12—46, 1966. ⁸ В. В. Рышков. ДАН СССР, 135. № 1, 20—22 (1960).