2U.5	40.4	U١		UI	U 🕹 🛛	9	44	S N	11	P 3		ՒՆ	ՆԵ	PI	1		U.4	UY	b	υŀ	U	5 ŀ		2	ԵԿ	nh	55	ՆԵ	p
до	к л	A	Д	Ы	A	K	A	Д	E	M	И	И	ł	1 /	4	У	K	A	P	M	Я	H	С	K	0	R	С	С	P

1975

VIII	621	289	9

LX

ФИЗИКА

Член-корреспондент АН Армянской ССР Г. М. Авакьянц. С. Г. Долмазян

Эффекты памяти, обусловленные остаточной проводимостью

(Представлено 9/VII 1974)

Электрофизические и оптические свойства кремкия с примесью серебра относительно мало изучены. Имеющиеся данные $(^{1-4})$ не объясняют наблюдаемых на эксперименте явлении, таких, как температурная зависимость времени спада фотопроводимости, эффекты намяти и разного рода переключений, осуществляемых с помощью сдвоенных импульсов на $p^+ \cdot n \cdot n^+$ структурах, изготовленных из компенсированного серебром электронного кремния.

Авторами (³) предпринята попытка объяснить закономерности спада фотопроводимости в образцах n-Si, компенсированного се ребром Согласно (³) время восстановления исходной проводимости не должно зависеть от температуры образцов, а с увеличением кон центрации компенсирующей примеси время восстановления должно уменьшаться. Оценка времени спада по формулам, приведенным в

Рис. 1. Кривая спада фотопроводимости

(), в нашем случае лает значення порядка 0,1 мксек, что на несколько порядков меньше наблюдаемых на опыте велични. Такое несоот ветствие результатов теории развитой в (^в) с наблюдаемыми на опыте явлениями побудило провести новые расчеты.

Авторы (³) наблюдали на кривой спада фотопроводимости два участка, аналогичные участки па кривой спада наблюдались и в случае проведенных нами экспериментов (рис. 1). Протяженность первого участка, как в случае описанном в (³) так и в нашем, порядка 1 мксек, который сменяется более продолжительным участком. Протяженность первого участка, по времени, не зависела от температуры В случае наблюдаемом авторами (³), продолжительность вгорого участка слабо увеличивалась с понижением температуры, тогда как в нашем случае полное время восстановления изменялось на несколько порядков. В качестве примера можно привести значения постоянной времени при T 300 K и T 160 K, здесь происходит увеличение τ от 4 до 6 $\times 10^3$ мксек соответствению.

Как показали расчеты, небольшое увеличение при понижении температуры возможно в случае малых концентраций компенсируюшей примеси, как это имело место в случае реализованном авторами (³)

Рассматриваемая ниже модель, объясняющая наблюдаемые явления, качественно отличается от модели, использованной в (³). В случае (³) физическая ситуация представляется авторами следующим образом В момент времени t О, когда возбуждающее действие света прекращено, часть неравновесных дырок валентной зоны рекомбинирует с электронами, находящимися на примесных уровиях серебра (первый, резкий участок на кривой спада фотопроводимости). В последующие моменты времени перавновесные электроны зоны проводимости совершают переходы на акцепторный уровень серебра и восстанавливают исходную концентрацию на этом уровне. Предполагается, что этот

Рис 2 Зонная модель

процесс продолжается достаточно долго и обуславливает второй участок на кривой спада. В запрещенной зоне предполагается наличие еще одного глубокого акцепторного уровня, образованного дефектами труктуры. Однако рекомбинация электронов зоны проводимости через этот уровень начинается поэже чем прекратится переход элек тронов с уровня серебра в валентную зону.

В случае рассматриваемой нами модели, в запрещенной зоиг полупроводника так же содержится уровень, созданный несовершенст, вами структуры, а процесс спада представляется следующим образоч В момент времени t=0, неравномерные электроны из зоны проводимо сти переходят на акцепторный уровень серебра (первый участок на кривой спада фотопроводимости). Со временем, захваченные электро ны генерируются в зону проводимости, после чего рекомбинируют через второй акцепторный уровень (рис. 2) с дырками в валентной зоне. Термическая генерация электронов, вообще говоря, медленный процесс и поэтому мы считаем, что второй участок на кривой спада обусловлен этим переходом.

В случае предложенной зонной модели, уравнения, описывающие наложенную кинетику, запишутся в виде:

$$\frac{\partial N_{1}^{-}}{\partial L} = \beta_{1} n (N_{1} - N_{1}^{-}) - a_{1} N_{1}^{-} - \beta_{p_{1}} p N_{1}^{-}$$
(1)

$$\frac{\partial N_2^-}{\partial t} = \beta_2 n (N_2 - N_2) - a_2 N_2^- - \beta_{p_2} p N_2^-$$
(2)

$$\frac{\partial n}{\partial t} = z_1 N_1^- + z_2 N_2^- - \vartheta_1 n (N_1 - N_1^-) - \vartheta_2 n (N_2 - N_2^-)$$
(3)

В случае квазинейтральности общее число электронов равно:

$$n = p + N_D - N_1 - N_2^-. \tag{4}$$

В уравнениях (1-4) использованы следующие обозначения: N_1 и N_1 концентрации акцепторных уровней серебра и образованного дефектами структуры; N_1^- и N_2^- — концентрация электронов на этих уровиях соответственно; z_1 и z_2^- коэффициенты, характеризующие тепловой выброс электронов этих уровней в E_c ; и β_2 —коэффициенты определяющие захват электронов зоны проводимости на N_1 , и N_2 ; и β_{p_2} —определяют захват дырок валентной зоны на акцепторные уровий.

Предполагаем, что $~N_D$. Это оправдано тем обстоятельством, что, согласно (1), в случае диффузии при 1350 С, концентрация введенных атомов серебра $~10^{17}c.m^{-3}$, а —исходного кремния $~10^{14}c.m^{-3}$, (N_D — концентрация атомов фосфора в исходном S1.) Считая. что $N_1 > N^-$ и малым и допуская, что рекомбинация электронов с N_1 маловероятна, систему уравнений (1—3) можно переписать так:

$$\frac{d N_1^-}{dt} = \beta_1 n N_1 - \alpha_1 N_1^-, \tag{1}$$

$$\frac{dN_{a}}{dt} = \beta_{a}nN_{a} - \beta_{pa}pN_{a}^{-1}$$

$$(2')$$

$$\frac{dn}{dt} = -\beta_1 n N_1 + \alpha_1 N_1 - \beta_2 n N_2, \qquad (3')$$

Поскольку переменные и и N₁ —не зависят от координат, то система уравнений (1—3) записана в полных дифференциалах.

Для определения зависимости числа электронов от премени воспользуемся выражениями (1) и (3'). так как в них учтены переходы носителей, ответственные за наблюдаемые участки на кривой спада фотопроводимости. В этом случае будем иметь следующее дифференциальное уравнение второго порядка:

$$\frac{d^2 n}{dt^2} + (a_1 + k) \frac{dn}{dt} + a_1 \beta_2 N_2 n = 0, \qquad (5)$$

$$k = \beta_1 N_1 + \beta_2 N_3. \tag{5'}$$

Решение (5) ищем в виде:

$$n(t) = C_3 e^{t_1 t} + C_2 e^{t_2 t}. \tag{6}$$

Для / н / находим:

гле

$$\chi_1 = -(x_1 + k) = \chi_2 = -\frac{x_1 + k}{x_1 + k}$$
 (7)

так как в момент времени t=0 мы примем, что n=n(0), а $N_1^-=N_1^-(0)-N_D$, тогда для коэффициентов в (6) получим:

Нетрудно заметить, что показатель степени первой экспоненты $\gamma_1 = -(z_1 + k)$ не зависит от температуры и обеспечивает первый участок на кривой снада. Это легко показать, считая $k \gg z_1$, что действительно выполняется, так как согласно (5') $k - \beta_1 N_1 = 10^{10} \ cex^{-1}$. Показатель второй экспоненты γ_2 при $k = -\frac{3}{2} \frac{N_2}{2}$ и уже существенно

зависит от температуры, так как 21~exp-[$\Delta E_{lk}T$], что обуславливает зависимость от температуры хвоста спада фотопроводимости.

Исследования температурной зависимости постоянной времени спада фотопроводимости осуществлялись в режиме малого нагрузочиого сопротивления. Возбуждение неравновесной фотопроводимости осуществлялось с помощью GaAs светоднодов с *i* = 0,92 *мкж*. Инжекционный светоднод питался прямоугольными импульсвми с генератора Г5—7А, где имелась возможность изменять не только частоту следования, но и длительность электрических импульсов Спад фотопроводимости наблюдался на экране осциялографа C1—54. Образцы компенсированного кремния, изготовленные по технологии, описанной в () резались на полоски размерами 3×8×0,5 *жм*³, на торцы которых наносились омические контакты¹.

В процессе проведенных исследований было выявлено, что постоянная времени спада т существенно увеличивается с понижением температуры. За исходную величину фототока принималось его зна-

¹ Авторы выражают благодарность Л. М. Капптоновой за номощь в приготовлении образцов

чение, соответствующее началу второго участка на кривой спада Такой выбор величины ΔI_0 обусловлен тем, что протяженность первого участка по току не зависела от температуры и была постояь ной при фиксированном значении мощности излучения светоднода Нам удалось наблюдать увеличение т от 4 до 6.5 · 10³ .иксек. (рис. 3)

Из наклона кривой (взятой в полулогарифмическом масштабе зависимости с от обратной температуры была определена экерги активации акцепторного уровия.

Рис З. Зависимость постоянной времени спада фотопроводимости от температури

Полученное значение 0,31 находится в хорошем согласни с резуль татами работ (²⁻⁵).

Явленне остаточной проводимости проявлялось на ряде наблюда емых нами эффектов. В частности, при относительно низких темпера турах в импульсном режиме на р⁺ип⁺ днодах (⁵) был обнаружен эф фект памяти. Сущность этого эффекта заключалась в том, что при временах ⁻ между импульсами, меньшими происходяло увеличение папряжения срыва. На дноды, при т≪т_{емст} подавале

сигнал амилитуды V_0 , V_{cp} и дноды переключались в открытое состояние. При последующем уменьшении амплитуды подаваемого электрического импульса до $V_1 < V_0$ дноды все еще продолжали оставаться в открытом состоянии, сохраняя информацию, полученную предшествующим импульсом.

При комнатных температурах с помощью сдвоенных импульсов наблюдались на ралл днодах эффекты пеерключения

На диоды с некоторой задержкой с подавались сдвоенные прямоугольные импульсы (рис. 4). Амплитуда первого импульса (назовем его предсигналом) в начальный момент времени была равной нулю (рис. 4,*a*). В тот же момент на диод подавался второй импульс (основной сигнал) с амплитудой V достаточной, чтобы с некоторой задержкой переключить диод из закрытого состояния в открытое. На протяжении всего эксперимента амплитуда основного сигнала сохранялась постоянной.

Рис. 4 Диаграмма, иллюстрирующая переключения сдв сиными импульсами

0

В последующие моменты времени амплитуда предсигнала плавно увеличивалась. При достижении некоторого значения $V_s < V_{cp}$, диод, который был переведен в открытое состояние основным сигналом, переключался в закрытое состояние (рис. 4,6). При последующем увеличении V_1 , до значений больших величин напряжения срыва, диод этим сигналом переключался в открытое состояние. В этот момент времени, днод, смещенный до срыва основным импульсом, возвращался в исходное открытое состояние (рис. 4,8). Следует отметить, что днод все время между событиями, изображенными на рис. 4, 6 и 8, находился в закрытом состоянии.

В случае, когда та и описанные эффекты переключения и памяти исчезали

Описанные эффекты, как нам кажется, согласуются с предложен ной моделью, объясняющей остаточную проводимость. Действительно в случае эффектов переключений, предполагается, что диоды основным сигналом переводятся в открытое состояние, в этот момент временк концентрация электронов на N_1 , мала, так как считаем, что за фор мирование ОС ответствения раскомпенсация акцепторного уровня серебра. Тогда инжектированные предымпульсом носители частично заполняют уровень N_1 , что приводит к тому, что N_1 , уже не раскомпен сирован, а такому состоянию N_1 соответствует закрытое состояние днода и приборы переключаются в высокоомное состояние. При вели чинах амплитуды предсигнала, достаточных, чтобы осуществить пере ключения в открытое состояние ($V_1 > V_{\rm T}$), ситуация в базовой области изменяется. В этом случае материал раскомпенсирован и число электронов на N_1 мало, последнее приводит к тому, что диод основным сигналом переключается в исходное (открытое) состояние.

Аналогичная ситуация возникает и в случае эффекта памяти. Здесь поскольку *<tsocct, происходит накопление электронов на N₁, что затрудняет раскомпенсацию и влечет к увеличению величины V. После того как диод переключился время восстановления уменьшается и : уже больше t_{волог}. Это ведет к возможности уменьшения амплитуды переключающего сигнала.

В заключении авторы считают своим приятным долгом выразить благодарность А. А. Лебедеву за оказанную помощь в проведении экспериментов и полезные дисскусии.

Институт раднофизики и электроники Академии наук Армянской ССР

Հայկական ՍՍՀ ԳԱ թղթակից-անդամ Գ. Մ. ԱՎԱԳՅԱՆՑ, Ս. Դ. ԳՈԼՄԱՉՑԱՆ

Սնագո**բղային նաղուղականության պայմանավո**րված նիշողության էֆեկտներ

վ առանում թեթվում են արձակի խառնուրդ պաթունակող սիլիցիու ի նմուշների Տամար ֆոտուոսանքի անկման ժամանակի Տաստատունի չերմաստիճանային կախվածության հտաղոտությունների արդյունըները։

Նշվում է, որ ֆոտոնոսանքի անկման կորի վրա նկատվում է երկու տեղամաս. Ընդ որում, առաջին տնղամասի ձգվածությունը կախված չէ ջերմաստիճանից, մինչդեռ երկրորդ տեղամասի տևողությունը էապես որոչվում է նմուշների ջերմաստիճանով։

Նշված Հետաղոտություններից բացի աշխատանթում նկարագրվում են Նաև մի բանի անումալ էֆեկտներ, որոնք նկատվում են դիողային կառուցվածքներն իմպուլսային ոետիմում ւետաղոտելու ժամանակ։ Նկատված է-

ն ֆոտոնոսանթի անկման օրինա։ափությունների թացատրման ամար առաջարկվում է տեսական մոդնլ։ Ստացված տեսական արդյունջները ույլ են աալիս բացատրելու փորձով դիտված երևույթները, որոնջ պայմաույուված են մնացորդային նաղորդականությամբ։

ЛИТЕРАТУРА — ЭРЦЧЦЪВКИВЦКЪ

5 И Болтакс, Сюн-ши-инь. ФТГ 2 2, 383(1961) 3 F. L. Thiel, S. K. Ghandhi. Appl. Phys. 41, 254 (1970). 3 P. S. Smith, A. C. Milnes Inter J. of Electroniks 3, 30, 4 (1971). 4 Л. А. Лебедев. А. Т. Мамадалимов. Ш. Михкимов. ФГП, 6 №11, 1972. 7. М. С. Г. Долмазан, Э. А. Хазарджан, ВАШ Арм. ССР, 1. I. VII 1 (1973.)

