LX 1975

1

УДК 5179

MATEMATHKA

Г. В. Вирабян

О кратной полноте собственных элементов для одного класса краевых задач, мероморфно зависящих от параметра

[Представлено чл корр АН Армянской ССР Р. А Александраном 21/V 1974]

В данной работе устанавливается теорема об т-кратной полноте системы собственных элементов для следующей краевой задачи на выбственные значения, мероморфно зависящей от параметра ?:

$$Lu + \lambda Mu + \lambda^2 Nu + \sum_{k=1}^{n-2} \frac{1}{\lambda - a_k} L_k u = 0. \tag{1}$$

$$u \left| \frac{\partial u}{\partial n} \right| = \frac{\partial^{n-1} u}{\partial n^{n-1}} = 0. \tag{2}$$

Здесь L, M, N, L_k ($k=1,2,\ldots,n-2$)—однородные дифференциальные ператоры с постоянными коэффициентами порядка 2, σ^2 —граница m—мерного эллипсонда Ω , в котором рассматривается краевая задача (1), (2), a_k ($k=1,2,\ldots,n-2$)—действительные числя, ℓ —комплексный пираметр.

Краевая задача (1), (2) в случае n=2 рассмотрена нами в работе (1).

Пусть $R(\Omega)$ означает множество всех полиномов от переменных $x_1, ..., x_m$, удовлетворяющих граничным условиям (2). Относительно дифференциальных операторов L, M, N, L_k предполагается

(I)
$$(-1)^s \int p \cdot Lp d2 > 0$$
, $0 = p \in R(2)$.

(II)
$$(-1)^s \int_{\mathbb{R}} p \cdot Np \, d \, 2 < 0, \quad 0 = p \in R(2).$$

(III)
$$\frac{(-1)^n}{a_k} \cdot \int_{\mathbb{R}} p \cdot L_k p d\Omega > 0 \qquad 0 = p \in R(\Omega).$$

Целью настоящей работы является доказательство следующей теоремы о кратной полноте.

Теорема. При выполнении условий (I)—(III) \exists системо полиномиальных собственных функций краевой задачи (I), (2), компорая n-кратно полна в пространстве $\hat{W}_{\Sigma}^{m}(\Omega)$.

Доказательству этой теоремы предпошлем некоторые вспомога тельные построения и леммы.

Обозначни через $R(\mathfrak{Q})$ пространство всех полиномов от переменных x_1, \dots, x_m . Нетрудно заметить, как это следует из условия (1), что отображение $L:R(\mathfrak{Q})\to R(\mathfrak{Q})$ является изоморфизмом и поэтому существует обратный оператор L^{-1} , отображающий $R(\mathfrak{Q})$ на $R(\mathfrak{Q})$. Применяя с обеих сторон уравнения (1) оператор L^{-1} , обратный к оператору L, перепишем краевую задачу (1), (2) в виде операторного пучка в пространстве $R(\mathfrak{Q})$

$$Eu - iAu - i^2Bu + \sum_{k=1}^{n} C_k u = 0,$$
 (3)

$$u \in \tilde{R}(\Omega)$$
. (4)

THE $A = -L^{-1}M$, $B = -L^{-1}N$, $C_k = L^{-1}L_k$, (k = 1, 2, ..., n-2).

Через R (Ω) обозначим пространство полиномов из $R(\Omega)$, степень которых не превышает n.

Тогда $R(\mathfrak{Q}) = \bigcup_{s \to \infty} R_s(\mathfrak{Q})$. Скалярное произведение в $R_s(\mathfrak{Q})$ зада-

$$(p,q) = (-1)^r \int_{\mathbb{R}^d} Lp \cdot q \, d\Omega, \qquad (\bullet)$$

Имеет место следующая

Пеммя 1. Операторы A, B, C, (k=1,2,...,n-2) для любого числа $s \ge 2$, отображают пространство $R_s(2)$ в себя и являются симметрическими относительно скалярного произведения (*), при чем операторы B, $1/a_k$ C_k (k=1,2,...,n-2) положительно определеные.

Рассмотрим гильбертову сумму и экземпляров пространств $R_s(\Omega)$

$$H_s(\Omega) = R_s(\Omega) \oplus \cdots \oplus R_s(\Omega).$$

Скалирное произведение элементов $\hat{p} = (p, p, p_1, \dots, p_{n-2})$ и $\hat{q} = (q_1, q_2, \dots, q_n)$ из $H_s(\Omega)$ имеет вид

$$|\rho, q| = (\rho, q) + (\rho', q') + \sum_{k=0}^{n-2} (\rho_k, q_k)$$
 (*, *)

В конечномерном пространстве (2) рассмотрим оператор П, заданный с помощью операторной матрицы, возникающей при линеаризации пучка (3) (2).

$$\Pi = \begin{bmatrix}
A & B & \frac{1}{a_1} & C_1 & \dots & \frac{1}{a_l} & C_l & \dots & \frac{1}{a_{n-2}} & C_{n-2} \\
E & O & O & \dots & O & \dots & O \\
E & O & \frac{1}{a_1} & E & \dots & O & \dots \\
E & O & O & \dots & \frac{1}{a_l} & E & \dots & O & \dots \\
E & O & O & \dots & O & \dots & \frac{1}{a_{n-2}} & E
\end{bmatrix}$$

В силу леммы 1 оператор H отображает пространство $\hat{H}_s(\Omega)$ в себя.

Лемма 2. Если $p=(p,p^*,p_1,\dots,p_{n-1})\in H_s(\Omega)$ собственный вектор оператора Π , соответствующий собственному значению , то первая компонента $p\in R_s(\Omega)$ является собственным элементом пучка (3) с собственным значением p=1/r, и наоборот, если $p\in R_s(\Omega)$ есть собственный элемент пучка (3) с собственным значением r, то вектор $p=(p,\frac{1}{r}p,\frac{1}{ra_1-1}p,\dots,\frac{a_{n-2}-1}{ra_{n-2}-1}p)\in H_s(\Omega)$ будет собственным вектором оператора Π , соответствующим собственному значению p=1/r.

Доказательство. Пусть $\hat{p} = (p, p', p_1, \dots, p_{n-2}) \neq 0$ и I7p = i p.

$$Ap + Bp + \frac{1}{a_1}C_1p_1 + \dots + \frac{1}{a_{n-2}}C_{n-2}p_{n-2} = ip,$$

$$p + \frac{1}{a_1}p_1 = ip_1,$$

$$p + \frac{1}{a_{n-2}}p_{n-2} = ip_{n-2}$$

Отсюда имеем

$$A p + \frac{1}{h}Bp + \sum_{k=1}^{n-2} \frac{1}{ha_k-1} C_k p = p$$

или, что то же самое

$$E\rho - \mu A\rho - \mu^2 B\rho = \sum_{k=1}^{n-1} \frac{\mu^2}{\mu - a_k} C_k \rho = 0, \quad \rho \neq 0, \quad \mu = \frac{1}{r}.$$

Обратно, пусть $p=0\in R_s(1)$ удовлетворяет уравнению (3). Тогда непосредственно проверяется, что вектор

$$p=(p,\frac{1}{p},\frac{a_1}{n_{n-1}},p,\dots,\frac{a_{n-2}}{n_{n-2}-1},p)$$

является собственным для оператора H в $\tilde{H_s}(\mathfrak{Q})$ с собственным значением $\mu = 1/\lambda$. Леммя доказана.

В пространстве $\mathring{H}_s(\Omega)$ рассмотрим оператор G, заданный с помощью операторной матрицы

$$G = \begin{bmatrix} E & O & O & \dots & O \\ O & B & O & \dots & O \\ O & O & -C_1 & \dots & O \\ a_1 & & & & & \\ O & O & O & \dots & -\frac{1}{a_{n-2}} C_{n-2} \end{bmatrix}$$

Лемма 3. Оператор—матрица G есть симметрический, положительно определенный оператор относительно скалярного произведения (*,*).

Доказательство. В самом деле, в силу леммы 1 для произвольных двух векторов $p=(p,p',p_1,\ldots,p_{n-2})$ и $q=(q,q',q_1,\ldots,q_{n-2})$ из пространства $H_1(\square)$ имеем

$$\begin{aligned} [(r\,p,\,q] &= (p,q) + (Bp',q') + \left(\frac{1}{a_1}C_1\,p_1,\,q_1\right) + \dots + \left(\frac{1}{a_{n-2}}C_{n-2}\,p_{n-2},q_{n-2}\right) = \\ &= (p,q) + (p',\,B\,q') + \left(p_1,\frac{1}{a_1}C_1\,q_1\right) + \dots + \left(p_{n-2},\frac{1}{a_{n-2}}C_{n-2}\,q_{n-2}\right) = \\ &= [p,\,G\,q]. \end{aligned}$$

Положительная определенность оператора G в $\mathring{H}_s(\Omega)$ следует из положительной определенности операторов B, $1/a_k C_k$ ($k=1,2,\ldots,n-1$) в $R_s(\Omega)$. В самом деле,

$$|Gp,p|=(p\,p)+(Bp\,,p')+\left(\frac{1}{a_1}C_1\,p_1,p_1\right)+\ldots+\left(\frac{1}{a_{n-2}}C_{n-2}p_{n-2},\,p_n\right)^{-1}$$
 для любого вектора $p\in H$ (2) а нз $[Gp,p]=0$ следует $p=p'=p_1=\cdots=p_{n-2}=0$, т. е. $p=0$. Лемма доказана.

В пространстве $\mu_s(\Omega)$, наряду со скалярным произведением (,) рассмотрим новое скалярное произведение

$$\langle p, q \rangle = [Gp, q], p, q \in \mathcal{H}_{\mathfrak{g}}(\Omega).$$

Лемма 1. Оператор матрица П является симметрическия в пространстве $H_s(\mathfrak{Q})$ (s 2) относительно скалярного процы дения (°, *).

Помазательство. Действительно, для любых двух векторов p= = $(p,p',p_1,...,p_{n-2})$ и $q=(q,q',q_1,...,q_{n-2})$ из пространства $H_3(\Omega)$ имеем $< \Pi(p,q) = [G\Pi(p,q)] = [\Pi(p,G)q] = (Ap+Bp'+\frac{1}{a_1}C_1p_1+...+\frac{1}{a_{n-2}}C_{n-2}p_{n-2},q) + (p,B)q'+(p+\frac{1}{a_1}p_1,\frac{1}{a_1}C_1q_1)+...+(p+\frac{1}{a_{n-2}}p_n,q_1,\frac{1}{a_{n-2}}C_{n-2}q_n,q_2) = (p,Aq+Bq'+\frac{1}{a_1}C_1q_1)+...+(p+\frac{1}{a_{n-2}}C_{n-2}q_n,q_1)+(B)q',q)+(\frac{1}{a_1}C_1p_1,q+\frac{1}{a_1}q_1)+...+(\frac{1}{a_{n-2}}C_{n-2}p_{n-2},q+\frac{1}{a_{n-2}}q_n,q_2) = (p,Rq+Bq'+\frac{1}{a_1}q_1)+...+(q+\frac{1}{a_{n-2}}C_{n-2}p_{n-2},q+\frac{1}{a_{n-2}}q_n,q_2) = (p,Rq+Bq'+\frac{1}{a_1}q_1)+...+(q+\frac{1}{a_{n-2}}C_{n-2}p_{n-2},q+\frac{1}{a_{n-2}}q_n,q_2) = (p,Rq+Bq'+\frac{1}{a_1}q_1)+...+(q+\frac{1}{a_{n-2}}C_{n-2}p_{n-2},q+\frac{1}{a_{n-2}}q_n,q_2) = (p,Rq+Bq'+\frac{1}{a_1}q_1)+...+(q+\frac{1}{a_{n-2}}C_{n-2}p_{n-2},q+\frac{1}{a_{n-2}}q_n,q_2) = (p,Rq+Bq'+\frac{1}{a_1}q_1)+...+(q+\frac{1}{a_{n-2}}C_{n-2}p_{n-2},q+\frac{1}{a_{n-2}}q_n,q_2) = (p,Rq+Bq'+\frac{1}{a_1}q_1)+...+(p+\frac{1}{a_{n-2}}C_{n-2}p_{n-2},q+\frac{1}{a_{n-2}}q_n,q_2)$

Здесь мы использовали леммы 1 и 3.

Аналогично определению л-кратной полноты, данному М. В. Келдышем () для полиномнальных пучков, вводим следующее.

Определение. Мы скажем, совокупность собственных функций [p] с собственными значениями [h] пучка (3) образует n кратно полную систему в пространстве $W_{\frac{n}{2}}(2)$, если системя вектор-функций

$$\left\{ \hat{\varphi} = \left(\hat{\varphi}, \frac{1}{i} \hat{\varphi}, \frac{a_1}{i a_1 - 1} \hat{\varphi}, \dots, \frac{a_{n-2}}{i a_{n-2} - 1} \hat{\varphi} \right) \right\}$$
 полна в гильбертовой сумме

и экземпляров пространств W(□ (Չ) ⊕ . . . ⊕ W(□ (Չ).

Доказательство теоремы. Из леммы 4 следует, что оператор Π в пространстве $H_{\mathfrak{q}}(\Omega)$ для любого \mathfrak{s} $\mathfrak{Q}_{\mathfrak{p}}$ имеет полную систему собственных векторов. Следовательно, объединение всех этих систем собственных векторов будет полной в $H(\Omega) = UH_{\mathfrak{s}}(\Omega)$. Замыкание $H(\Omega)$ в метрике этого пространства совпадает с $H(\Omega) = W^{(1)}(\Omega)$ в $W^{(1)}_{\mathfrak{q}}(\Omega)$, поскольку, как это показано в $U(\Omega)$ имеется полная система собственных векторов в $U(\Omega) = W^{(1)}_{\mathfrak{q}}(\Omega)$. А это в силу леммы 3 означает, что первые компоненты собственных векторов оператора $U(\Omega)$ образуют $U(\Omega)$ в гильбертовом пространстве $U(\Omega)$. Теорема доказана.

Ереванский госудирственный университет

Պարոսքիարից միրոմորֆ կախված հգրային խնդրի ահիական ելեմինաների բազմապատիկ լրիվության մասին

արկան մասի չազան լբերատարճուղ որփակար տեղընքրի վերտերևնան ըմետնիջ խըմկնրի չբ-

$$Lu + i Mu + i^{2} Nu + \sum_{k=1}^{n-2} \frac{\lambda^{2}}{i - a_{k}} L_{k} u = 0, \tag{1}$$

$$u \bigg|_{\partial u} = \frac{\partial u}{\partial n} \bigg|_{\partial u} = \dots = \frac{\partial u}{\partial n^{n-1}} \bigg|_{\partial u} = 0. \tag{2}$$

որտեղ L M, N, I_k ($k=1,2,\ldots,n-2$) — ատատան դործակիցներով 2, կարգի դիֆերենցիալ սպերատորներ են, ապացուցված է սեփական հունկցի անհրի n- ապատիկ լրիվության վերարհրյալ թեորեն։

ЛИТЕРАТУРА — ЭРИЧИЪПЪРВЯВЪ

¹ Г. В. Вирабин, ДАН Арм. ССР. т. XI.III. №1 (1966). ² Р. Н. Maller Mathematische Zeitschrift, 70 Band 5, 1959. ³ Г. В. Вирабин, ДАН Арм. ССР, т. XLVIII, №2 (1969). ⁴ М. Г. Крейн, Г. К. Лангер, Труды межд. симп. по прим. т. ф. к. п. в че-ханике спаошной среды, Изд. "Наука", 1965.