LVIII 1974

УДК 547.362+543.4224

ОРГАНИЧЕСКАЯ ХИМИЯ

Б. З. Геворкян, В. Т. Алексанян

Образование комплексов окисных циклов с молекулярным хлором при низких температурах

(Представлено академиком АН Армянской ССР А. Т. Бабаян 2/IV 1974)

Недавно мы сообщили об образовании донорно акцепторного комплекса циклопропана с молекулярным хлором при низких температурах в твердой фазе (1). Было наидено, что в этих же условиях образуется комплекс хлора с оксираном. Однако в этом случае в донорно акцепторном взаимодействии участвуют, по-видимому, не орбитали трехчленного цикла, а неспаренные электроны атома кислорода окисного цикла. Об этом свидетельствует, во-первых, большая величина сдвига при комплексообразовании с оксираном и, во-вторых, тот факт, что по предварительным данным образование комплекса имеет место и в случае четырехчленного окисного цикла оксетана, тогда как циклобутан в аналогичных условиях с молекулярным хлором не взаимодействует.

В настоящем сообщении изложены результаты более детального изучения взаимодействия с молекулярным хлором некоторых окисных циклов-оксирана, оксетана, тетрагидрофурана.

Образцы для измерений готовили совместным напылением компонент в криостате. Напыление осуществляли при давлении 10 эмм рт. ст. через систему с игольчатым вентилем тонкой регулировки, позволяющую менять скорость напуска органического компонента. Регулировка напуска хлора в криостат осуществлялась с помощью системы тонких стеклянных капилляров. Конструкция криостата позволяла производить измерения спектров ИК поглощения и спектров КР.

Спектры НК поглощения измерены на спектрофотометре Хитачи-Перкин-Эльмер, модель 225 со спектральной ширипои щели не превышающей 1,0—1,5 см⁻¹, спектры КР (область частот валентного колебания Cl₂)—на спектрометре Кодерг РНО с лазерным возбуждением (Не—Ne- лазер, мощностью 25 мвт). Результаты измерений для образцов с соотношением, органической компоненты к хлору 1—50. представлены в таблицах 1—3. Для сравнения в этих же таблицах приведены результаты измерений ИК-спектров поглощения чистых поликристаллических образцов оксирана, оксетана и тетрагидрофурана вместе с данными об отнесениях наблюдаемых полос поглощения Чистый кристаллический хлор не поглощает в средней ИК области Частоты линий валентного колебания Cl₂ в спектре КР кристаллического Cl₂ равны 538 (³⁵Cl₂) 530,5 (³⁵Cl₂) ²⁷Cl₂) и 523,5 см⁻¹ (³⁷Cl₂) с соотношением интенсивностей, равным 9:6:1.

При рассмотрении данных таблиц 1—3 обращает на себя внимание отсутствие давыдовского расшепления полос поглощения окисных циклов, характерного для спектров чистых веществ. Можно поэтому заключить, что исследованные образцы являются по существу истинными твердыми растворами органического компонента в хлоре.

Во всех спектрах появляется триплетное поглощение области 500— 550 см 1, обусловленное молекулярным хлором и сдвинутое относительно частот свободного хлора, известных из спектра КР. Появление этого поглощения и наличие сдвига свидетельствует о донорно-акцеп-

Отнесение (2)	Оксиран жидкость 7 = - 90 (2)	Оксиран кристаля T= - 180 (2)	Твердый раствор оксирана в С1 ₂ 7 — 180	
³¹ C1 ₂			506 ca	
3:C1 35C1			514 cp	
35C1,			520 cp	
		783 сл		
B ₃ 4 ₁₅ 5R CH ₃	7 9 9 c	794 C	781 cp	
A . La CU	817 ca	798 с 818 ср	813 cp	
A ₃ v ₈ v _R CH ₃	OII LA	825 cp	ato ch	
		838 o.c.s		
№ 12 кольцо	865 o.c	854 o.c	856 o.c	
12	20.0	860 o.c		
В _{1 122} кольцо		876 o.c		
A ₂ > 3 ₁ CH ₂	1033 o ca	104.5 c	1116	
A ₁ ₄ CH ₂	1119 ca	1117 CA	1116 сл	
No a CU	1151 cp	1119 ca 1147 c	1144 ca	
B 11 A CH2	tion ch	1161 cp	1149 cp	
Bioria Sw CH ₂		1166 cp	1158 cp	
21. 11 1		1170 ср		
CisCis H'O	1256 сл. пл.	1253 o.ca		
Аз з кольцо	1265 o.c	1267 o.c	1266 c	
β ₁ γ ₁₀ β ₅ CH ₂	1457 ср па.	1460 cp	1459 c	
4 . 5 (10)	1466 c	1467 cp	1481 cp	
A ₁ y ₂ J ₂ CH ₂		1480 ср 1494 сл	1401 ch	

Обозначения: с-сильная, ср-средняя, сл-слабая, о-очень, пл-плечо, вр СН₂, л₄СН₂, л₄СН₃ и л₅СН₃ маятниковые, крутильные, веерные и ножинчиме колебания метпленовых групп.

торном взаимодействии молекул хлора с молекулами окисных циклов. Величина сдвига возрастает при переходе от трехчленного (18 см $^{-1}$) к четырехчленному циклу (26 см $^{-1}$) и далее сохраняется (тетрагидрофуран—26 см $^{-1}$). Наблюдаемый ход $^{\Delta v}_{\text{CI}}$, согласуется с выводом о том, что молекула хлора при комплексообразовании взаимодействует с атомом кислорода окисного цикла, так как именно подобным же образом в ряду трех-четырех и пятичленных гетероциклов качественно меняется основность гетероатома (5 $^{-1}$).

Колобательный свектр оксетана и его твердого раствора в Cl_2 в области $<1500\ cm^{-1}$

Таблица 2

Отнесение (3)	Жидкость (3)	Кристаял 7 -—180 (3)	Твердын раствор в С1 ₂ Т——180	
37C1 35C1 37C1 35C1 A _{1 'в} скелет A _{2 '13} †R CH ₂ В _{2 '23} я СН ₂	830 сл	734 c 825 c 843 cp	497 сл 505 ср 512 с 750 ср	
В ₂ ¹ / ₂₂ ВR СН ₂ В ₁ скелет А ₁ ¹ / ₁ скелет	892 o.c 991 o.c 929 c	854 о.сл 895 о.с 906 о.с 928 ср 963 сл,пл	888 c 904 cp 926 o.c	
B ₁ 1 ₁₃ скелет A ₁ 1 ₆ скелет B ₂ 1 ₂₁ β ₁ CH ₃	980 o.c 1028 c 1134 c	978 o.c 984 o.c 1026 o.c 1128.5 cp 1137 o.c	960 o.c 1015 o.c 1133 cp	
A ₂ 7 ₁₁ 7 ₁ CH ₂ A ₃ 7 ₁₀ β ₁ CH ₂	1176 сл 1202 сл.пл	1144.5 ср 1184.3 ср 1196.2 сл 1196.3 с	1180 сл 1200 сл	
B ₁ v ₁₀ v _w CH ₂ B ₁ v ₁₅ v _w CH ₃ A ₁ v ₅ v _w CH ₂	1233 с 1285 сл 1311 о.сл	1240.9 cm 1249.3 c 1288.2 cp 1342 cp 1352.5 cp	1235 c 1283 cp 1332 cp	
B ₁ γ ₃₄ β, CH, A ₁ γ ₄ β, CH ₂ A ₁ γ ₃ β, CH ₂	1452 cp 1460 cp 1499 cp	1455 cp 1464 c 1466.5 cp 1515 cp	1449 c 1463 cp 1485 cp	

Обозначения см. табл: 1

Спектр окисного цикла в целом меняется мало при образования комплекса. Отметим довольно заметные сдвиги полос в инзкочастотную сторону, достигающие до 30 см 1. Такие значительные сдвиги нельзя приписать лишь влиянию «растворителя»—хлора и, в основном, как мы полагаем обусловлены комплексообразованием.

Интересно отметить, что в спектрах сокопденсатов Cl_2 с оксираном и оксетаном очень слабы или полностью отсутствуют полосы колебании симметрии A_2 , хорошо проявляющиеся в спектрах чистых поликристал-

Колебательный спектр тетрагидрофурана и его твердого раствора в Cl₂ в области < 1500 см-1

Отнесение (4)	KP (4)	ИК (4)	Кристалл 7—180 (4)	Твердый раствор ТГФ в С1 ₂ 7— 180°
22C1 32C1 22C1				497 cp 505 c 512 c
B _{1 126} βR CH ₂	651 o.c	654 c	662 c	655 c 662 c 676 c
			725 ca 838 o.c 871 c 891 c	832 c 852 c 875 c
А ₁ v ₉ скелет В ₁ v ₂₅ βR СН ₂	908 o.c		908 с 921 с 954 с 980 сл.пл	910 c 922 c 958 cp
A ₁ V _A BR CH ₂ A ₁ V ₇ CKEJET	1028 ca 1071 o.ca	1030 ср пл 1067 о с	1043 o.c. 1058 o.c 1150 ca	985 c.1 1037 o.c
A ₁ _{V₆} скелет В ₁ _{V₃₀} β _w СН ₂	1174 о.са 1234 ср	1179 o c 1238 c	1179 o.c 1241 c 1292 cp	1167 cp 1240 cp 1290 cp
U ₁ γ ₂₃ β _W CH ₂		1289 ср	1307 ср 1323 ср	1308 сл
A ₁ γ ₅ β _w CH ₂ B ₁ γ ₃₂ β _w CH ₂	1335 cp 1368 cp	1333 сл 1364 ср	1339 сл 1368 ср 1421 сл. пл	1338 cp 1360 cp
B ₁ γ ₃₀ β ₅ CH ₂ A ₃ γ ₃ β ₆ CH ₂	1452 c 1486 cp	1461 c	1441 c 1466 cp 1487 cp	1444 cp 1457 cp 1475 ca

Обозначения см. таба. 1

лических образцов. Это означает, что симметрия комплексов не ниже, C_{23} , а поскольку сами оксиран и оксетан в свободном состоянии имеют симметрию C_{23} , то можно сделать вывод о сохранении их симметрии в комплексах.

Институт органической химин Академии наук Армянской ССР

Институт элементо-органических соединений Академии наук СССР

ը, գ. գնվորգերը, վ. Տ. Ալեբսևները

Ցածբ չնբմաստինանում օքսիդային օղակների ճետ մոլնկուլային քլորի կոմպլեքսների առաջացումը

ծույց է տրված, որ օքսիրանը, օքսնտանը և տնտրոհիդրոֆուրանը ցածր ջերմաստիճանային պայմանում քլորի հետ համատեղ նստեցնելիս վերջինի հետ առաջացնում են դոնոր-ակցեպտորային կոմպլեքսներ։

283

Օքսիդային օղակում որոյես ակտիվ կենտրոն հանդես է դալիս իիվածևի ատոմը էլեկտրոնների դոնորի դերում։

թյան մեջ է գտնվում այդ օղակներում իթվածնի ատոմի հիմնայնության հետև չարքով՝ օքսիրան<օքսետան - տետրահիդրոֆուրտն, որը համապատախանության մեջ է գտնվում այդ օղակներում իթվածնի ատոմի հիմնայնության հետւ

ЛИТЕРАТУРА — ЧРИЧИЪПЪРВЯПЪЪ

1 В Т Ілексанян, В З Геворкян, Журн «Структурн, химия», 15, вып. 3, стр. 450, 1974 г В Т. Алексанян, Е Р Разумова, 1 П. Курбакова, С. М. Мостаковский, «Оптика и спектрескопия», 31, 69 г., (1971) в В. Г. Алексанян, Докторская диссертации, ИНЭОС М., 1970 г А. Раіт. Е. Р. Bissel, Spectrochim Acta, 16, 1960. В Е. Lippert, Н. Prigge, Lieb Ann. Chem. 659, 81; (1962). Вет., 67(6), 554, (1963). Г. Н. Горшкова, З. Б. Баринова, В. Т. Алексанян, В. А. Пономаренко, Изпестия АН СССР, сер. хим., 312, 1968. М. М. Мовсумваде, Г. В. Сергеев, А. Л. Шабанов, В. В. Смирнов, ДАН СССР, 206, 396 (1972).