УДК 591.1.05

ВИОХИМИЯ

А. С. Оганесян, Ж. С. Геворкян

Образование аммиака из L-аминокислот срезами почек в присутствии сыворотки крови

(Представлено академиком АН Армянской ССР Г. X. Бунатяном 11/VI 1973)

Ранние исследования Кребса (¹), Браунштейна (²) и других авторов (³-5) показали, что при инкубации срезов коркового слоя почек белых крыс и других животных на фосфатном буфере отмечается продукция значительного количества свободного аммиака из ряда природных аминокислот (глютаминовая, аспарагиновая, аланин). Наши исследования (⁶⁻⁷), проведенные за последние годы в тех же условиях, показали, что помимо вышеупомянутых аминокислот, в корковом слое почек деаминируются также орнитин, аргинин, пролин, лизин, гамма-аминомасляная кислота и некоторые другие аминокислоты. Особенно большое количество продукции аммиака наблюдается из орнитина, аспарагиновой и глютаминовой кислот.

Имея в виду, что клетки почек непрерывно омываются межклеточной жидкостью, по своему составу близкой к сыворотке крови, в дальнейших исследованиях в качестве инкубационной среды, мы применяли сыворотку крови и изучали ее влияние на образование аммиака из некоторых L-аминокислот в срезах коркового слоя почек.

Срезы коркового слоя почек брали по 200 мг на пробу и инкубировали в сыворотке крови белых крыс, а также кроликов и человека, при 37 С в течение одного часа. Аминокислоты добавляли на каждую пробу по 16 мкмоль. Аммиак определяли путем микродиффузии по Конве, с последующим добавлением реактива Несслера. Для контроля параллельно проводили те же исследования в Кребс-Рингер-бикарбонатном буфере.

Результаты исследований, приведенные в табл. 1, показывают, что при инкубации срезов почек в буфере из добавленных глютаминовой, аспарагиновой кислот и оринтина образуется значительное количество свободного аммиака, как это неоднократно отмечалось и в наших прежных опытах. При инкубации срезов в сыворотке крови белых крыс, кролика и человека наблюдается значительное подавление образования аммиака из упомянутых аминокислот Следует отметить, что подав-

ление образования аммиака под действием сыворотки крови человек выражено в меньшей степени.

Полученные результаты побудили нас изучить влияние экстракт срезов почек на образование аммиака из вышеупомянутых аминокислог

Таблица
Влияние сыворотки крови животных и человека на образование аммиака
из L-аминокислот в срезах коркового слоя почек белых крыс (в мкмолях
0,2 г ткани/час). Средние данные из десяти опытов

Условия опыта	Глютамино- ная кислота	Аспарагино- вая кислога	Орнитин
Буфер	1,26±0,2	2,04±0,1	2,54±0,2
Сыворотка белой крысы	0,32±0,02	0,48±0,05	0,8°±0.01
Сыворотка кролика	0,28±0,01	0,52±0,03	1,24±0.07
Сыворотка человека	0,44±0,04	0,92±0.07	1,46±0.1

Таблица! анне

Влияние экстракта срезов коркового слоя почек на образование аммиака из L-аминокислот (в мкмолях (0,2 г ткани/час) Средние данные из шести опытов

Условня опыта	Глютамино- вая кислота	Аспараги- новая кис- лота	Орнитин
Контроль	1,3±0,15	2,4±0,2	2,4±0,25
Экстракт срезов	0,2±0,01	1,3±0,02	1,7,±0,1
Экстрагированные срезы	2,0±0,3	3,0±0,2	3,0±0,15

Мы предполагали, что некоторые вещества, содержащиеся в сыворотке крови и оказывающие подавляющее влияние на образование аммиака из L-аминокислот, могут находиться и в почечной ткани. С этой целью срезы почек встряхивали в Кребс-Рингер-бикарбонатном буфере в течение 20 минут, после чего путем центрифугирования их отделяли от инкубационной среды и инкубировали в буферном растворе, а упомянутый экстракт срезов почек употребляли для инкубирования свежих срезов. Опыты показали (табл. 2), что почечный экстракт, так же как и сыворотка крови, значительно подавляет аммиакообразование в упомянутых аминокислот. Причем тормозящее действие в большой степени проявляется в отношении дезаминирования глютаминовой кислоты. Подавление дезаминирования аспарагиновой кислоты и оринтина менее выражено, как и в опытах с сывороткой крови. Интересно отметить, что срезы почек, обработанные буфером, проявляют большую дезаминирующую активность, чем контрольные, что, по-видимому, обус-

Влияние различных количеств сыворотки крови белых крыс на образование аммиака из L-аминокислот (в мкмолях/0,2 г ткани/час) Средние данные из шести опытов

Названия аминокислот	Контроль	Степень разбавления сыворотки крови						Неразбав-	
	(на буфере)	40 раз	20 раз	10 раз	6.6 pa3	5 pa3	4 р а за	2 pas a	воротка
Глютаминовая кислота Аспарагиновая кислота Орнитин	1,2±0,1 2,1±0,1 2,2±0,2	0,9±0,1 1,9 0,15 2,15±0,1	0.65±0.2 1.6 0.2 2.2 - 0.4	0.5+0.1 1.3±0.25 2.0±0.15	0.4+0.07	0.2-0.07 0.9±0.1 1.5+0.3	0.15±0.02 0.76±0.1 1.45±0.2	0,13+0,02 0,8+0,1 1,2+0,2	0.13+0.02 0.3+0.03 i.1+0.15

Влияние сыворотки крови белых крыс на поглощение L-аминокислот срезами коркового слоя почек белых крыс (в мкмолях/0,2 г ткани или мл инкубируемой среды/час). Средние данные из шести опытов

Условия опыта		Буфер			Сыворотка			
	Глютаминова я кислота	Аспарагиновая кислота	Орнитин	Глютаминовая кислота	Аспарагиновая кислота	Орнитин		
Среда								
Контроль Глютаминовая кислота Аспарагиновая кислота Орнитин	1.0±0.04 6.6±C.8 4.5±0.6 1.8±0.08	0.6±0.1 0.6±0.14 3.2±0.4 0.5±0.08	следы следы следы 5.3+0.8	3,4+0,6 11,2+1,4 6,2+0,6 4,4 0,4	0,48±0,04 0,8±0,1 5,3±0,7 1,0±0,2	0.8±0.1 0.8±0.1 0.8±0.1 7.4±1.0		
Ткань								
Контроль Глютаминовая кислота Аспарагиновая кислота Оримтин	0.7±0.1 1.26±0.2 1.24±0.2 1.0±0.2	0.22±0.06 0.32±0.02 0.52±0.1 0.28±0.02	0,52+0,06 0,3 +0,04 0,52+0,04 0,98+0,06	1.1±0.1 1.4±0.1 1.3±0.1 1.28±0.02	0,33±0,05 0,5 ±0,06 0,67±0,1 0,32±0,05	0.42+0.06 0.4+0.04 0.4+0.06 0.7+0.1		

овлено выходом в эстрагируомую жидкость определенных веществ, казывающих подавляющее действие на образование аммиака из L-аминокислот.

В дальнейших опытах мы в инкубационную среду добавляли сыворотку, разбавленную от 2 до 40 раз. Результаты этих опытов (табл. 3) показали, что дезаминирование отдельных аминокислот в присутствии сыворотки крови подавляется в неодинаковой степени. Наиболее чувствительным в этом отношении является дезаминирование глютаминовой и аспарагиновой кислот. Даже при разбавлении сыворотки крови в 40 раз, отмечается небольшое, по достоверное подавление образования аммиака из этих аминокислот. Дезаминирование орнитина менее чувствительно к тормозящему действию сыворотки крови. Подавление образования аммиака из этой аминокислоты начинается при разбавлении сыворотки не более, чем в 6,6 раз.

В дальнейшем мы изучали влияние сыворотки крови на процессы поглощения аминокислот из инкубируемой среды срезами почечной ткани. Результаты исследований (табл. 4) показывают, что при инкубации срезов почек в Кребс-Рингер-бикарбонатном буфере наблюдается поглощение значительного количества добавленных аминокислот из инкубируемой среды, в то время как инкубация срезов в сыворотке крови приводит к выраженному торможению поглощения добавленных аминокислот. При инкубации срезов почек в буферном растворе в присутствии добавленных аминокислот их содержание в срезах сравнительно больше, чем в тех же условиях, но в среде с добавлением сыворотки крови. Результаты исследований показывают, что сыворотка крови содержит определенные вещества, которые действуют как на транспорт аминокислот, так и на процессы их дезаминирования в самих клетках. Надо полагать, что эти вещества регулируют скорость процессов дезаминирования L-аминокислот в почках (возможно, и в других тканях) в зависимости от физиологического состояния организма (режим питания, кислотно-щелочное равновесие и др.), что может иметь важное значение для регуляции обмена аминокислот.

Институт биохимин Академин наук Армянской ССР

Ա. Ս. ՀՈՎՀԱՆՆԻՍՑԱՆ, Ժ. Ս. ԳԵՎՈՐԳՑԱՆ

Ամիակի առաջացումը L-ամինաթթունեrից եrիկամնեrի կառվածքներում առյան շիջուկի ներկայությամբ

Փորձերը դրվել են սպիտակ առնետների երիկամների կեղևային շերտի կտրվածքների վրա։ Ստացված տվյալները ցույց են տվել, որ ինչպես առնետների, նույնպես և ճաղարների ու մարդկանց արյան շիջուկը պարունակում է մի նյուն (կամ նյուներ), որը որոշակի չափով ճնշում է ամինանիուների դեամինացումը երիկամների կեղևային շերտի կտրվածքներում։ Այդ նյունը պարունակվում է նաև երիկամային հյուսվածքում։ Ցույց է տրվել նաև, որ արյան շիջուկի արդելակող ազդեցունյունն ավելի արտահայտված է գլյուտա-մինաննին և ասպարագինաննվի դեամինացման նկատմամբ, իսկ օրնիտինի նկատմամբ այն համեմատաբար նույլ է արտահայտված։

Ստացված տվյալները հիմք են տալիս ենթադրելու, որ արյան շիջուկում գտնվող այդ նյութը ֆիզիոլոգիական պայմաններում կանոնավորող ազդեցություն է թողնում ամինաթխուների փոխանակության վրա երիկամներում։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

¹ H. A. Krels, Biochem. I., 29, 1951, 1935. ²A. E. Браунштейн Р. М. Азарх, Биохимия, 9, (6), 337(1944). F. Salvatore, V. Lappia a. E. Cortere, ⁸ Enzymologia, 31(2), 113 (1966). ⁴ H. G., Preuss, Am. I. physiol., 220 (1), 54 (1971). ⁵ H. G. Preuss, a. F. R. Weiss, Am. I. physiol., 221 (2), 458(1971). ⁶ Г. Х. Бунятян, А. С. Оганесян, Ж. С. Геворкян, АН СССР, 177, №4, 951 (1967). ⁷ Ж. С. Геворкян, Антореферат канд. дисс., Ереван, 1969.