

УДК 581.1:550.4

ФИЗИОЛОГИЯ РАСТЕНИЯ

Э. А. Кюрегян, Р. А. Бурнутян

Медь, цинк и свинец в соке растений

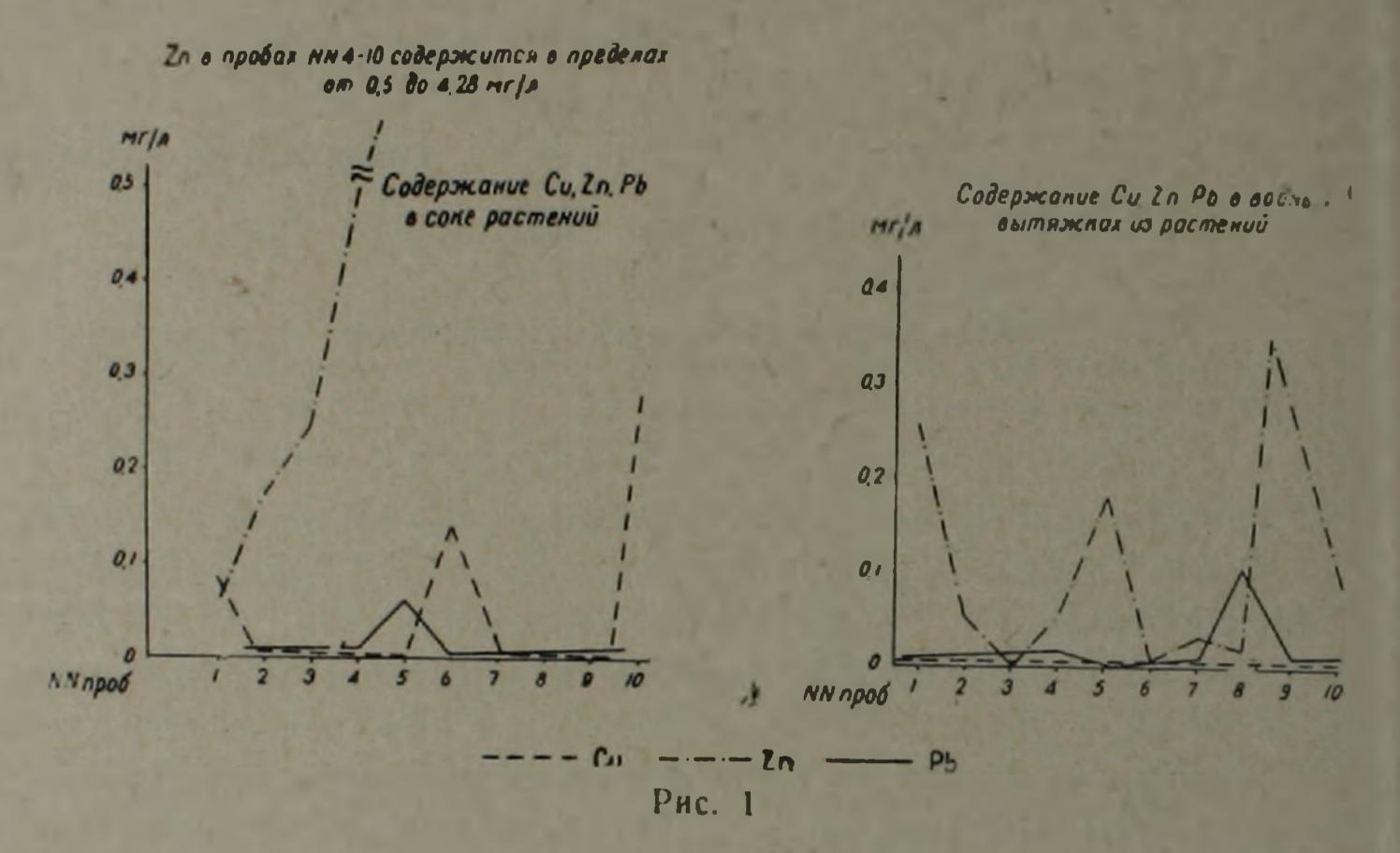
(Представлено чл.-корр. АН Армянской ССР В. О. Казаряном 3/1 1973).

О наличии золота, молибдена и рения в соке растений, полученном из растений, произрастающих на месторождениях, нами уже было сделано сообщение (1). Работы эти продолжаются.

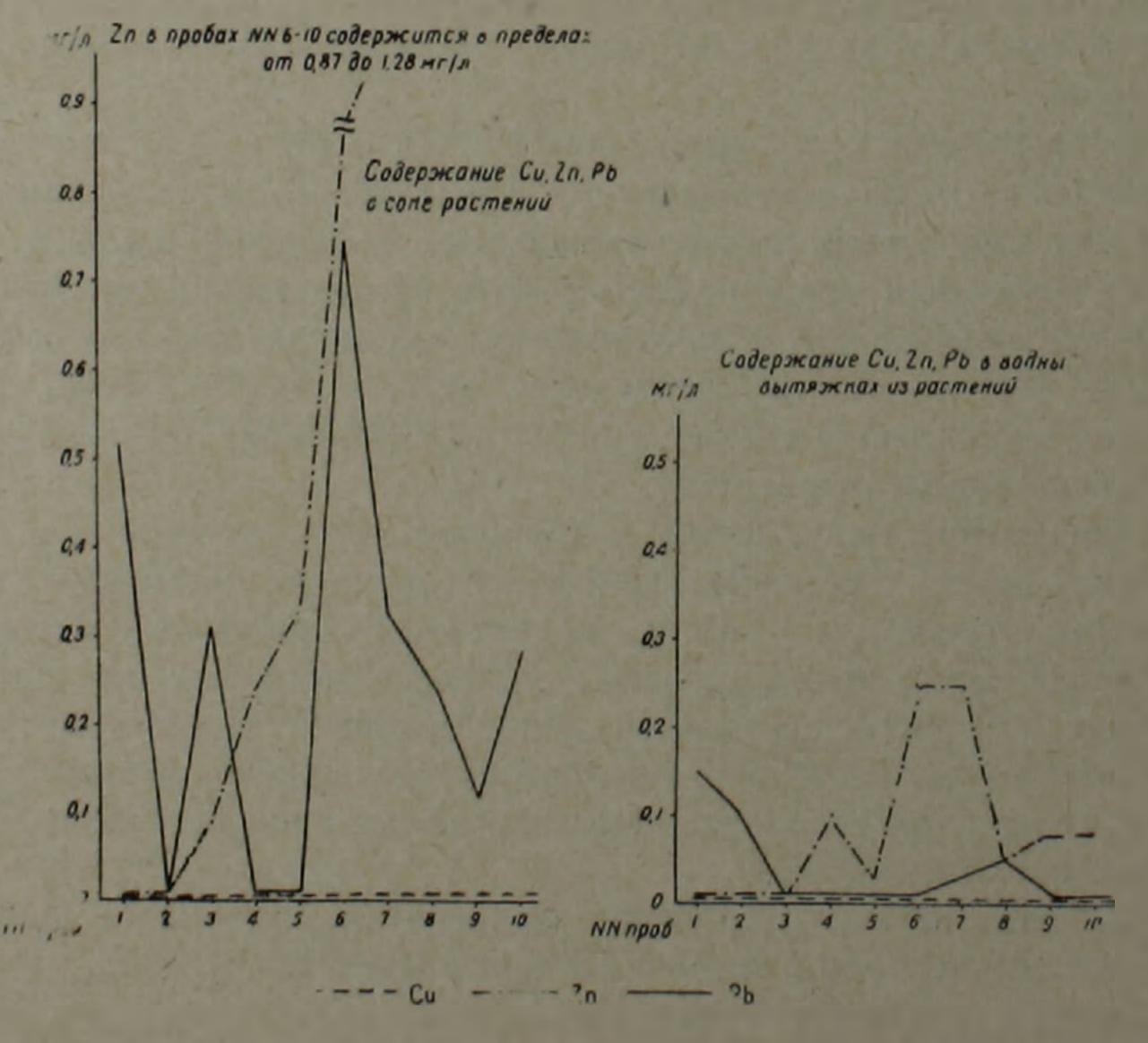
Темой настоящей статьи является обнаружение полиметаллов в соке растений. Сок из растений мы получаем непосредственно в полевых условиях, пропуская свежие, тщательно вымытые растения через соковыжималку. Полученный сок, подкисленный несколькими каплями НСІ доставляется в лабораторию в пробирках с притертами пробками; здесь сок разбавляется дистиллированной водой до определенного объема и в аликвотной части раствора ведется определение элементов.

Отбор растений на определение Cu, Zn и Pb в соке растений был произведен с медно-молибденового Анкаванского месторождения и с Зодского волоторудного месторождения Армянской ССР в период цветения растений (июль). Кроме того, из тех же растений, но из отдельной навески, были приготовлены водные вытяжки, в фильтрате которых так же велось определение меди, цинка и свинца. Водные вытяжки готовились с соотношением 1:10 грастения: вода), так же из тщательно промытых растений.

Определение меди, цинка и свинца в соке растений и в водных вытяжках велось с помощью 0,001%-ного раствора дитизона в четырех-хлористом углероде (2). Метод основан на образовании окрашенных соединений меди, цинка, свинца в растворе дитизона, при различной величине РН раствора, нужной для извлечения каждого дитизоната. Цвет полученных растворов дитизонатов меди, цинка, свинца сопоставляется со шкалой стандартных растворов, которая готовится одновременно с анализом (2,3,5).


В нижеследующих таблицах приводятся полученные данные по определению меди, цинка, свинца в соке растений.

По этим данным составлены рис. 1 и 2.


Как показывают данные, в соке и в водных вытяжках всех рас-

тений, отобранных с Анкаванского медно-молибденового месторождения, медь полностью отсутствует. Это может быть объяснено тем, что медь обладает настолько большой подвижностью в зоне окисления (4), что зачастую поверхностые части земного покрова совсем освобож-

Зодское месторождения

Аннавансное месторождениє

Piic. 2

даются от медных минералов. В соке Verbascum и Quercus—имеющих довольно глубокую корневую систему—медь, по-видимому, накапливается в клетчатке, где и удерживается. Цинк присутствует в соке всех растений в довольно значительных количествах (от 0,09 до 1,28 mz/Λ), за исключением Dianthus и Vica. В водных вытяжках—от 0,03 до 0,25 mz/Λ .

Все соединения цинка обладают высокой растворимостью в воде (при 20° C, в ϵ/Λ) (6):

Высокая растворимость соединений цинка способствует обогащению ими природных вод. Поэтому из всех полиметаллов ряда Cu—Zn—Pb, которые мы определяли в пробах, цинк обнаружен в довольно высоких количествах.

Таблица 1
Анкаванское месторождение
Содержание Си, Zn, Pb в соке растений и в водных вытяжках из растений

€ Nº	Наименования растений			растен	ий	Водная	вытя	жка
проб	Латинское назва-	Русское название	Содержание в миллиграммах на 1 литр					
			Cu ²	Zn ²	Pb2+	Cu ²	Zn ²	Pb2+
1	Dianthus	Гвоздика	Н	Н	0.50	Н	Н	0.015
2	Vica	Вика	H	H	H	H	H	0.010
3	Matricaria Verbascum	Ромашка	Н	0.093	0.31 H	H	0.10	H
5	Glaucium	Коровяк Глауциум	H	0.33	1-1	Н	0.030	H
6	Lotus	Лядвенец	H	0.87	0,75	Н	0.250	H
7	Rumex	Щавель	H	1.22	0.33	Н	0.250	0.030
8	Thumus	Тимьян	Н	1,25	0.25	H	0.050	0.050
9	Quercus	Дуб	H	1,25	0.12	H	0.080	H
0		Сем. Зонтичных	H	1.28	6.28	H	0 080	H

Зодское месторождение Содержание Си, Zn, Ph в соке растений и в водных вытяжках и³ растений

No No	Наименования растепий		Сок растений			Водная вытяжка		
роб	Лагинское назва- ине	Русское пазвание	Сп2	Zn ²	в мил. Рь2	лиграмя Си ²	Zn2+	
1 2 3 4 5 6 7 8 9 10	Urtica Aster alpinus Tussilago Plantago Narcissus Rubus Verbascum Lotus Matricaria Mentha	Коровяк Лядвенец Ромашка	H H 0,140 H H	0.060 0.180 0.250 0.500 0.530 0.780 0.930 1.500 2.210 4.280	H H 0.060 H H H H	H	0.250 0.050 H 0.050 0.180 0.010 0.030 0.020 0.350 0.100	H 0.004 H 0.003 0.130 H

Свинец содержится в соке большинства растений от 0,12 до 0,75 мг/л, а в водных вытяжках—от 0,01 до 0,05 мг/л. Как видим, содержание свинца небольшое. Он относится к наиболее трудно подвижным элементам. Соединения свинца обладают незначительной растворимостью в воде (при 20°C, в г/л) (2):

 $\frac{\text{Pb(NO_3)_2}}{\text{PbCl_2}} = \frac{-522}{-9.9}$ $\frac{\text{PbBr_2}}{\text{PbSO_4}} = \frac{-7.3}{-0.04}$

Азотно-кислый свинец наиболее растворим в воде, по, по-видимому, исследованными растениями эти соединения свинца как раз не погло-щаются, чем можно объяснить его низкое содержание в соке растений.

На Зодском золоторудном месторождении, медь обнаружена лишь в 3-х пробах, в водных вытяжках медь полностью отсутствует. Здесь так же, как и на Анкаванском месторождении, наблюдается высокое содержание цинка: в соке растений—от 0,06 до 4,28 мг/л, а в водных вытяжках—от 0,01 до 0,35 мг/л.

Свинец присутствует лишь в соке Narcissus (0,06 мг/л), а в водных вытяжках—в 4-х видах растений—от 0,003 до 0,13 мг/л.

Таким образом мы наблюдаем, что медь соком растений не извлекается, тогда как извлечение ципка—зпачительное.

Свинец также извлекается соком растений, но меньше по сравнению с цинком.

Данные, полученные при анализе всех проб водных вытяжек доказывают те же положения, с той лишь разницей, что содержание цинка и свинца в водных вытяжках меньше, чем в соке растений, иногда настолько меньше, что оказывается ниже предела чувствительности анализа.

Институт геологических наук Академии наук Армянской ССР

Է. Ա. ԿՅՈՒՐԵՂՅԱՆ, Ռ. Ա. ԲՈՒՌՆՈՒԹՅԱՆ

Պղինձը, ցինկը և կապաբը բույսերի հյութի մեջ

Հոդվածում բերում են տվյալներ ՀՍՍՀ Զոդի ոսկու և Հանքավանի որդինձ-մոլիբդենային հանքավայրերից հավաքված բույսերի հյութերի հայտնաբերված պղնձի, ցինկի և կապարի առկայության մասին։

Ուսումնասիրություններից պարզվում են՝

- 1) ալզինձը բույսի հյունից չի կորզվում, իսկ ցինկի կորզումն ավելի ղղալի եւ
- 2) կապարը կորզվում է, չնայած, որ նա թիչ շարժունակ <mark>է՝ համեմատ</mark>ած ցինկի հետ։
- 3) նշված էլեմենտներն առկա են նաև բույսի չրային մովածքներում, բայց շատ քիչ քանակությամբ։

ЛИТЕРАТУРА— ЧЕЦЦЦЫПРИВПРЫ

1 Э. А. Кюрегян, Р. А. Бурнатян, «Известия АН Арм. ССР», Науки о Земле, т XXV, № 2 (1972). ²А А. Резников, Е. П. Муликовская, И. Ю. Соколов, Методы анализа природных вод, М., 1970. ³ И. И. Гинзбург, опыт разработки теоретических основ геохимических методов поисков, М., 1957. ⁴ С. С. Смирнов, Зона окисления сульфидных месторождений, М., 1955. ⁵ Сборник статей, Геохимические методы поисков рудных месторождений, под ред. В. И. Смирнова (перевод с английского и немецкого). М., 1965. ⁶ Ю. Ю. Лурье, Справочник по аналитической химии, М., 1952.