С. С. Агаян

MATEMATUKA

УДК 517.

Разложение функций, определенных вне компактов на действительной оси, в ряды специального вида

(Представлено академиком АН Армянской ССР С. Н. Мергеляном 30/Х 1972).

Пусть E, mes E>0—произвольный компакт на действительной оси, а G—дополнение E $G=\{(\infty+\infty)/E\}=\bigcup_{j=1}^\infty G_i$, и пусть $\gamma(z)$ гармоническая мера множества E относительно верхней полуплоскости. Обозначим через $\mu(z)$ функцию $\mu(z)=\gamma(z)+i\gamma(z)$, где $\gamma(z)$ — функция сопряжения $\gamma(z)$. И наконец, пусть функция f(z) — определена на G. Мы назовем вообще рядом (1) от функции f(z) всякий ряд:

(1)
$$f(z) = \frac{a(z)}{2} + \sum_{n=1}^{\infty} a_n(z) \cos n\mu(z) + b_n(z) \sin n\mu(z)$$

"коэффициенты" которого $a_n(z)$, $a_n(z)$, $b_n(z)$, $(n=1,2,\cdots)$ определяются формулами:

$$a_n(z) = \frac{2}{\pi} \int_0^z f(t) \cos n\mu(t) \frac{\sin \frac{1}{2} [\mu((t) - \mu(z))]}{t - z} dt$$

(2)
$$b_n(z) = \frac{2}{\pi} \int_G f(t) \sin n\mu(t) \frac{\sin \frac{1}{2} [\mu(t) - \mu(z)]}{t - z} dt$$

где z—любая точка $z \in C/E/C$ — комплексная плоскость.

Знак " " указывает на то, что мы построили ряд чисто формальным образом, и означает лишь, что $a_n(z)$, $b_n(z)$ связаны f(z) формулой (2), причем не предполагается, что ряд вообще сходится, тем более сходится к функции f(z).

Главным вопросом, как и в теории тригонометрических рядов, является вопрос, возможно ли, и в каких именно случаях, заменить знак " " знаком равенства. Поставленная таким образом задача эквивалентна задаче изучения ряда вообще. Цель предлагаемой работы есть рассмотрение вопросов, группирующихся около этой задачи:

- а) в каком смысле и при каких условиях ряд (1) "представляет функцию" f(z);
 - б) скорость сходимости ряда (1);

для ряда нашего типа возникает и задача следующего сорта:

- в) если имеем сходимость на G, то где, кроме G, ряд сходится, т. е. найти область сходимости ряда (1).
- 1. В этом пункте мы будем рассматривать вышензложенные вопросы только для точек x, принадлежащих G.

Теорема 1. Если f(z) абсолютно интегрируема на G, то

$$\lim_{n \to \infty} a_n(x) = 0 \qquad \qquad \lim_{n \to \infty} b_n(x) = 0$$

сходимость к нулю равномерна для любого отрезка $[a, b] \subseteq G$.

Доказательство теоремы опирается на доказательство существования обратной функции $\mu(x)$ на связном множестве G_j ($j=1,\ 2,\ \dots$).

Принцип локализации Римана. Прежде чем сформулировать этот принцип, перепишем частичную сумму $S_n(f, x)$ ряда (1) в интегральной форме:

$$S_n(f,x) = \frac{1}{\pi} \int_G f(t) \frac{\sin (n + \frac{1}{2}) [\mu(t) - \mu(x)]}{t - x} dt$$

Теорема 2. (о локализации). Если f(x) абсолютно интегрируема на G, то для любого x и i>0 справедливо равенство или,

$$S_n(f, x) = \frac{1}{\pi} \int_{an\{x-\delta, x+\delta\}} f(t) \frac{\sin(n+\frac{1}{2})[\mu(t)-\mu(x)]}{t-x} dt + o(1)$$

другими словами, поведение ряда (1) функции f(x), $x \in G$ в некоторой точке x зависит исключительно от значений принимаемых функций в некоторой (произвольно малой) окрестности точки x.

Опираясь на эту теорему и нижесформулированную лемму, можно получить критерий сходимости ряда (1).

Лемма. Для любого x, x=G справедливо равенство:

$$\lim_{n\to\infty} S_n(1, x) = \lim_{n\to\infty} \frac{1}{\pi} \int_{G} \frac{\sin(n+\frac{1}{2})[\mu(t) - \mu(x)]}{t-x} dt = 1$$

Теорема 3. Если функция f(x) абсолютно интегрируема на G, то для того, чтобы в некоторой точке x, $S_n(f, x)$ сходился к какому-то числу S, необходимо и достаточно, чтобы

$$\lim_{n\to\infty}\int_{0}^{x}\left[\frac{f(x+t)-S}{t}\right]\sin\left(n+\frac{1}{2}\right)\left[\mu(t+x)-\mu(x)\right]dt=0,$$

гбе ϕ — любое положительное число с условием ($x-\phi$, $x+\phi$) $\cap E=\varnothing$. Если мы хотим, чтобы в точке X ряд имел , естественную сум-

му", т. е. сумму, равную f(x), то для этого необходимо взять S = f(x) Если f(x) непрерывна на (a, b) и $\epsilon > 0$ любое, то для равномерной сходимости ряда (1) на $[a+\epsilon, b-\epsilon]$ необходимо и достаточно, чтобы

$$\lim_{n\to\infty} \int_{0}^{\infty} \left[\frac{f(x+t)-f(x)}{t} \right] \sin\left(n+\frac{1}{2}\right) \left[\mu(t+x)-\mu(x) \right] dt = 0$$

равномерно на [a,b], где b-1 любое действительное число, удовлетворяющее неравенству $0 < b < \epsilon$. Отсюда можно вывести интересные для приложений следствия.

Следствие. Если f(x) абсолютно интегрируема на G и при фиксированиом x интеграли

$$\int_{-\delta}^{0} \frac{f(x+t) - f(x-0)}{t} dt \qquad \int_{0}^{\delta} \frac{f(x+t) - f(x+0)}{t} dt$$

с некоторым существуют, то частичные суммы $S_n(f, x)$ ряда (1) функции f сходятся в этой точке к $\frac{f(x+0)+f(x-0)}{2}$ где f(x+0)

и f(x-0) суть левый и правый пределы функции в точке x (пред-полагается, что x есть точка разрыва первого рода f).

Если функция f(x) непрерывна на $[a, b] \subset G$ и если для любого > 0 существует b > 0, так что сразу для всех $x \in [a, b]$ выполняется перавенство

$$\int_{t} \left| \frac{f(x+t) - f(x)}{t} \right| dt < \varepsilon,$$

то ряд (1) для функции f(x) сходится к ней равномерно на [a, b].

Теорема 4. Если f(x) ограниченная и непрерывная функция на G, то справедливо равенство:

$$S_n(f, x) = 0 \text{ (ln}n)$$

2. В пункте 1 мы рассматривали вопрос о сходимости ряда (1) только на G, теперь перейдем к вопросу: в каких точках, кроме точек G, ряд (1) вообще сходится, тем более сходится к функции f(z). Справедлива

Теорема 5. Если ограниченная функция f(z) аналитична 6 C/E и стремится к нулю при $z \to \infty$, то ряд (1) сходится к f(z) для z; $z \in C/E$ более того, ряд (1) сходится к f(z) со скоростью геометрической прогрессии, m. e.

$$|S_n(f,z)-f(z)|=k\cdot q^n$$

где K — константа, q — константа, зависящая только от z, (q<1).

Автор выражает глубокую признательность С. Н. Мергеляну за постановку задачи и внимание к работе.

Вычислительный центр Академии наук Армянской ССР и Ереванского государственного университета

Ս. Ս. ԱՂԱՅԱՆ

Իւական առանցքին պատկանող կոմպակտից դոււս ուոշված ֆունկցիայի նեւկայացումը ճատուկ շաւքով

Դիցուք E (mes E>0), որևէ կոմպակա է իրական առանցքի վրա, G-ն նրա լրացումն է իրական առանցքի նկատմամր $G=\{(-\infty,\infty)/E\}$ ։ նշանակենք E բազմության հարմոնիկ չափը վերին կիսահարթության նկատեմամբ $\gamma(z)$ -ով իսկ $\gamma(z)$ -ով հետևյալ ֆունկցիան $\gamma(z)+\gamma(z)$, որտեղ $\gamma(z)$ -ն $\gamma(z)$ -ի համալուծ ֆունկցիան է։ Եվ վերջապես տնենք $\gamma(z)$, ֆունկցիան ուրոշված $\gamma(z)$ -ի վրա։ Կազմենք հետևյալ շարքը՝

$$f(z) \sim \frac{a_0(z)}{2} + \sum_{n=1}^{\infty} a_n(z) \cos n\mu(z) + b_n(z) \sin n\mu(z)$$

որի «դործակիցները» $a_0(z)$ $a_n(z)$ $b_n(z)$ $(n=1,\,2\,\ldots)$ որոշված են՝

$$a_n(z) = \frac{2}{\pi} \int f(t) \cos n\mu(t) \frac{\sin \frac{1}{2} |\mu(t) - \mu(z)|}{t - z} dt$$

$$b_n(z) = \frac{2}{\pi} \int f(t) \sin n\mu(t) \frac{\sin \frac{1}{2} \left[\mu(t) - \mu(z) \right]}{t - z} dt$$

որտեղ z-ը ցանկացած կետ է C/E տիրույթից (C-կոպլեքո հարթությունն է)։

երմնական հարցը, որն տստմնասիրված է ներկա աշխատանքում, դա այն է, խև ինչպիսի պայմանների դեպքում և որտեղ (I-ի վրա, G-ից դուրս, կարելի է փոխարինել «Հանը հավասարության նչանով։

Ար չարքերի համար առաջանում է նաև այսպիսի հարց՝ եթե ունենք ղուդամիտությունը 6-ի վրա, ապա որտեղ բացի 6-ից շարքը զուդամետ է։ ձիչտ է հետևյայր.

Խ հորհմ. Եթև սահմանափակ ֆունկցիան f(z) անալիտիկ է C/E-ում և ձգտում է դերոյին, երը $z-\infty$, ապա $S_n(f,z)$ զուդամիտում է f(x)-ին այն z-ի համար, որոնք $z\in C/E$ (որտեղ $S_n(f,z)$ շարքի մասնավոր գումարն է)։ Ստացված է դուդամիտության արագությունը։