УДК 631.46+577.15

АГРОХИМИЯ

А. Ш. Галстян, Н. А. Оганесян

к вопросу восстановления окиси железа в почве

(Представлено академиком АН Армянской ССР Г. С. Давтяном 11/VII 1972)

В настоящей работе мы пытались установить возможное участие ферментов в процессе восстановления окиси железа в почве. Этот вопрос почти не изучен. В литературе имеется лишь указание С. М. Бромфильда (1) относительно участия дегидрогеназ в реакции восстановления железа в почве.

Существует также мнение о том, что нитратредуктаза некоторых микроорганизмов способствует восстановлению железа, где трехвалентный ион железа является акцентором электронов (2).

Относительно выявления роли почвенных микроорганизмов в процессе восстановления железа проведены значительные работы (3—12). В ранних исследованиях считали, что способностью восстанавливать железо обладают лишь некоторые виды микроорганизмов (Escherichia coli, Bacillus polymyxa и Clostridium sporogenes). В дальнейшем было установлено, что восстанавливать железо способны многие виды микроорганизмов.

Сравнительно полный обзор по данному вопросу имеется в работе Т. В. Аристовской и Г. А. Заварзина (9). Установлено, что воздействие микроорганизмов на процесс восстановления железа может быть прямым и косвенным. Среди микробных метаболитов биологически самыми активными являются ферменты, которые в основном осуществляют микробнологические процессы. С этой точки зрения изучение их активности представляет определенный интерес.

Исследования проводились на различных типах почв Армении. Почву высушивали при комнатной температуре, очищали от растительных остатков, просеивали через сито с отверстиями диаметром в 0,25 мм. Для установления оптимальных условий действия ферментов, осуществляющих реакцию восстановления окиси железа, проводили методическую работу по выявлению зависимости между навеской почвы количеством субстрата, температурой, кислотностью среды, продолжительностью инкубации, донатором водорода и вытеснителями восстановленного железа из почвы. Предложенный метод основан на фотоколо-

риметрическом определении двухвалентного железа 2,2'-дипиридилом (13).

Навески (1 г) почвы помещали в 100-миллилитровые вакуумные колбы с притертыми стеклянными пробками, прибавляли 10 мг окиси железа в виде тонко-измельченного порошка. Тщательно перемешивали, затем добавляли 1 мл дистиллированной воды и 1 мл 1%-ного раствора глюкозы в качестве донатора водорода. Воздух из колб эвакуировали при разряжении 10-12 мм рт. ст. Колбы осторожно встряхивали и ставили в термостат при 30° на 48 часов. Контролем служили почвы с водой, субстраты без почвы. После выдерживания почвы с субстратом в колбы добавляли 18 мл 1 н раствора H₂SO₄ для экстрагирования восстановленного железа. Колбы встряхивали 5 мин и фильтровали. Из фильтрата 10 мл переносили в 25-миллилитровые мерные колбы добавляли 12 мл ацетатного буферного раствора (100 г ацетата натрия растворяют в 500 мл дистиллированной воды, добавляют 300 мл ледяной уксусной кислоты и доводят объем раствора до 1 л) и 1 мл 0.5%-ного раствора 2,2'-дипиридила. Через 30 мин окрашенный раствор фотоколориметрировали прибором ФЭК-М. Использовали 10 мм кюветы и зеленый светофильтр.

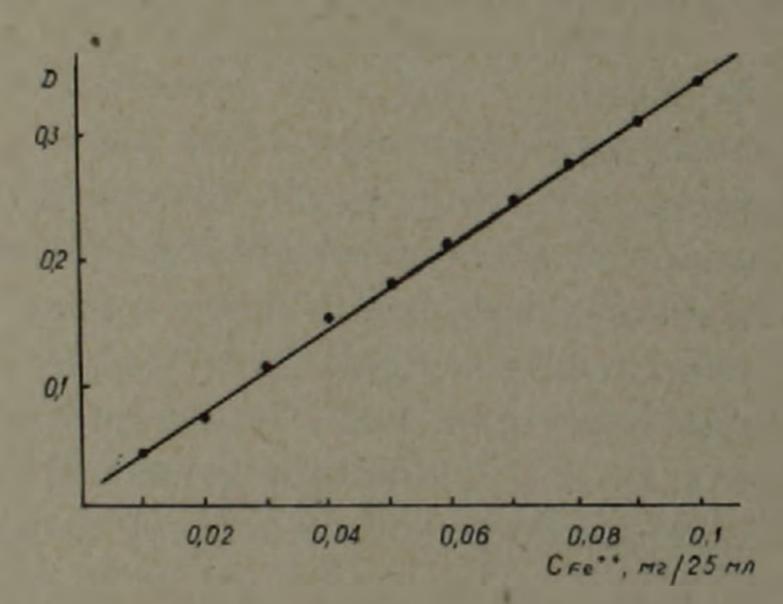


Рис. 1. Колибровочный график для фотоколориметрического определения активности ферриредуктазы почвы

Активность Fe_2O_3 — редуктазы выражали в миллиграммах восстановленного Fe_2O_3 на 100 г почвы. Количественный учет восстановленного железа был произведен с помощью калибровочного графика (рис. 1), полученного из стандартных растворов соли Мора. 0,7022 г $FeSO_1 \cdot (NH_4)_2SO_4 \cdot 6H_2O(x.~ч.)$ растворили в холодной прокипяченной дистиллированной воде, подкисленной 2 мл H_2SO_4 (уд. в. 1,84) и разбавили водой в мерной колбе емкостью 1 до метки. 1 мл этого раствора содержит 0,1 мг Fe. Образцовый раствор железа приготовили разведением рабочего раствора в 10 раз.

Исследования показали, что в почве при восстановлении окисн железа участвуют ферментные системы. В опытах с применением коферментов (импортные препараты) была установлена возможность использования кислорода окиси железа в качестве конечного акцепто-

ра электронов в цепи окислительно-восстановительных процессов, осуществляемых дегидрогеназами почвы (табл. 1).

Влияние коферментов и донатора водорода на активность ферментов, восстанавливающих окись железа в почве (мг Fe_2O_3 на 100 г почвы)

Варнанты	Почва		
	бурая куль- турно- по- ливная	лугово-чер- ноземная	лесная ко- ричневая
Почва без субстратов	1,4	20,4	10,0
-,- + Fe ₂ O ₃ + вода	1,4	21,5	14,3
$-$ + $fe_2O_3 + HAД + ФАД$	6,7	25,7	17,1
$+ Fe_2O_3 + Глюкоза$	5,8	26.6	17,8
—"— — Глюкоза—НАД—ФАД	5,7	22,9	15,7
- $ +$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	11.4	31,5	20,5
+Fе_О_+Глюкоза НАД ФАД	11,5	28,2	22,9

В почву прибавляли 0,5 мг коферментов НАД и ФАД. В анаэробных условиях НАД восстанавливается в НАД \cdot Н2 и в результате действия соответствующей редуктазы водород переносится на кислород Fe₂O₃. Этот фермент можно назвать ферриредуктазой. Прибавление к почве донатора водорода и коферментов значительно активизирует восстановление окиси железа в почве. Последнее указывает на ферментативный характер эгой реакции.

Из приведенных данных видно, что в варианте без прибавления субстратов обнаруживается значительная активность ферриредуктазы, которая восстанавливает железо почвы. В случае прибавления коферментов и глюкозы без Fe₂O₃ активность редуктазы повышается для бурой почвы 5,7, лугово-черноземной—22,9 и лесной коричневой—15,7 мг Fe₂O₃ на 100 г почвы.

Процесс восстановления Fe_2O_3 в почве, с участием ферментов, можно представить следующими уравнениями:

$$R-H_2+HAD(Φ)-R+HAD(Φ)\cdot H+H$$
 $HAD(Φ)\cdot H+H+ΦAD\rightarrow HAD(Φ)+ΦAD\cdot H_2$
 $Fe_2O_2+3ΦAD\cdot H_2\rightarrow 2Fe_-+3ΦAD+3H_2O_*$

Активность восстановления окиси железа в различных гипах почв неодинаковая. Высокая активность ферриредуктазы обнаруживается в бурых, лугово-черноземах и лесных почвах, низкая—в мелиорированных солончаках (табл. 2).

Ферриредуктаза активно действует в слабо-щелочной среде.

Таким образом, в результате исследования установлено, что в процессе восстановления окиси железа в почве участвуют ферменты. В почве обнаружено действие ферриредуктазы (Восстановленный НАД (Ф): Fe₂O₃—оксидоредуктаза), которая мобилизованный дегидрогеназами водород органических веществ передает кислороду окиси железа,

Почва		Гумус, %	рн, H ₂ O	Активность мг Fe ₂ O ₃ на 100 г почвы
Горно-луговая дер Лугово-черноземна Чернозем выщелом Каштановая карбо Бурая полупустыны Мелиорированный	яя ченный натная язя	15.7 7.4 7.1 3.4 2.2 1.1	5,2 5,2 6,8 7,6 8,2 7,5	3,6 8,6 4,3 2,9 14,3 1,5

осуществляя реакцию ее восстановления. Кислород окиси железа является акцептором электронов окислительно-восстановительных процессов в почве.

Институт почвоведения и агрохимии МСХ Армянской ССР

Ա. Շ. ԳԱԼՍՏՅԱՆ, Ն. Ա. ՀՈՎՀԱՆՆԻՍՅԱՆ

Հողում երկաթի օքսիդի վերականգնման հարցի մասին

Ուսումնասիրված է երկանի օքսիդի վերականդնման ռեակցիայի բնույնը հողում։ Ապացուցված է, որ երկանի օքսիդի վերականդնման ըննացքին մասնակցում են հողի օքսիդառեղուկտազները։ Հողում հայտնաբերված է ֆերմենտի գործունեունյուն, որը դեհիդրոգենաղների չրածինը փոխանցում է երկանի օքսիդի ննվածնին և վերականդնում այն։ Մշակված է հողում հայտնաբերված ֆերմենտի՝ երկանռեղուկտաղայի ակտիվունյան որոշման եղանակը։

ЛИТЕРАТУРА — ԳРԱԿԱՆՈՒԹՅՈՒՆ

¹ S. M. Bromfield, I. Gen. Microbiol., 11, № 1, 1954. ² I. C. L. Ottow, L. Allgem, Mikrobiol., № 5, 1968. ³ H. L. Halvorson, R. L. Starkey, Soil Sci., 24, 1927. ⁴ I. L. Roberts, Soil Sci., 63, 1947. ⁵ C. B. Blomfield, I Soil Sci., 1, 1950. ⁶ S. M. Bromfield, J. Soil. Sci., 5, 1954. ⁷ S. N. Mandal, Soil Sci., 91, 1961. ⁸ S. Motomura, Soil Sci. Plant Nutri., Tokyo, 8, 5, 1962. ⁹ T. V. Aristovskaya, J. A. Zavarrin, Soil Biochemistry, vol. 2, N. Y. 1971. ¹⁰ Л. В. Калакуцкий, В. И. Дуда, Научн. докл. высш. школы № 1, 1961. ¹¹ А. Ю. Дараган. "Почвоведение", № 2, 1967. ¹² Э. П. Трошанов, Микробиология, т. 37, в. 5 (1968). ¹³ Л. Н. Александрова, О. А. Найденова, Лабораторно-практические занятия по почвоведению, Изд. "Колос", Л., 1967.