1973

1

VIK 552.333

ПЕТРОГРАФИЯ

Г. А. Казарян

О находке нефелиновых фонолитов в Армянской ССР

(Представлено академиком АН Армянской ССР К. Н. Паффенгольцем 5/V 1972)

Нефелиновые щелочные породы в пределах Армянской ССР до сих ор были известны только в Мегринском плутоне и в Тежсарском масшве. Нами в Арташатском районе, у сел. Н. Кетанлу, выявлен третий счету пункт нефелинсодержащих пород (нефелиновые фонолиты).

Выявление щелочных пород в совершенно другой структурно-формационной зоне имеет важное значение для выяснения закономерностей магматизма Малого Кавказа.

В геолого-структурном отношении нефелиновые фонолиты приуроены к бортовой зоне Араратской котловины, депрессии среднего теения р. Аракс (1). Район выходов нефелиновых пород сложен песчаниими, известковистыми песчаниками и известняками среднеэоценового озраста, которые на контакте с интрузивом подвергнуты слабому онтактовому воздействию, выраженному в уплотнении и перекристализации.

Интрудирующая магма оказала заметное механическое воздействие вмещающие породы, нарушая их первоначальное залегание.

Форма интрузивного тела силлообразная с нахождением подводя-

Макроскопически нефелиновые фонолиты имеют серую окраску, со табым фиолетовым или буроватым оттенком и шелковистый блеск. Тектура пород порфировая, приобретающая от центра к периферии массиболее резкий характер в связи с уменьшением размеров зерен мисралов, слагающих основную массу.

Под микроскопом породы имеют порфировое строение с трахитовой сновной массой.

Плагиоклаз образует таблитчатые, иногда полисинтетически сдвойшкованные вкрапленники величиной до 3×1 мм, а в основной
ссе встречается мелкими идиоморфными призматическими зернами
обоих случаях он представлен высокотемпературным альбитом (№5—
2v=—52°).

Калиевый полевой шпат встречается таблитчатыми вкрапленниками размером 2×1 мм и, в основном, мелкими призматическими, по ксеноморфными, относительно плагноклаза и пироксена, зерпами, слагающими основную массу. Калиевый полевой шпат со следующими оптическими константами [001]—Ng—90°, Nm—21°, Np—69°, 2v = -34(*) соответствует высокому санидину.

Нефелин встречается в небольшом количестве (8—10%) в пегматитообразных сегрегациях, образуя друзы короткопризматических кристалликов размером 0,5×0,5 мм; почти бесцветный (слабо сероватый), свежий, обладает низким двупреломлением (0,005), одноосный, оптически отрицательный.

Темноцветный минерал—клинопироксен образует изометрические, иногда сдвойникованные вкрапленники величиной до 2×2 мм, зонального строения, с ярким плеохроизмом от буро-желтого до желтовато-серого в ядре и от буро-желтого до бутылочно-зеленого на краях зерен. От центра к периферии оптические константы меняются следующим образом: c:Ng=48°, $2v=+61^{\circ}(\ ^{\circ})$; c:Ng=56°; $2v=+68^{\circ}(\ ^{\circ})$; c:Ng=62°; $2v=+80(\ ^{\circ})$, что свидетельствует об увеличении эгириновой молекулы в клинопироксене от 7—10% до 35—37%. Мелкие зерна клинопироксена, участвующие в сложении основной массы породы, окращены в темно-зеленый цвет и по составу соответствуют краевой зоне вкрапленников, т. е. являются наиболее богатыми эгириновой молекулой.

Гранат в довольно большом количестве встречается в породах эндоконтактовой фации изометричными, буроватыми, обычно почерневшими по краям зернами величиной до $0.1\, mm$. Он имеет состав меланита с содержанием $\text{TiO}_2-2.7\%$. К центру массива количество зерен граната в породе заметно уменьшается, но одновременно увеличиваются и его размеры (до $0.5\, mm$).

Акцессорные минералы в описанных породах представлены мелкими зернами сильно окисленного магнетита, апатитом, цирконом, сфеном.

В общей сложности породы имеют свежий облик, со слабо выраженной пелитизацией полевых шпатов, местами замечается выделение кальцита по стыкам породообразующих минералов.

В табл. 1 приведены химические анализы нефелиновых фонолитов Кетанлинского массива.

На петрохимической диаграмме А. Н. Заварицкого фигуративные точки пород базальт-трахитовой серии Западного Вайка располагаются полосой между вариационными линиями типа Иеллоустонского парка и Этны, являющимися границей известково-щелочных и щелочных рядов. В верхней правой части диаграммы, в районе средних трахитов по Дэли, наблюдается некоторый разброс фигуративных точек, после чего следует расщепление общего направления их расположения. Одна линия продолжает развитие общего направления серии и достигает точки, соответствующей щелочным риолитам, а другая—резко сворачивает вправо и достигает поля фонолитов. Такое расщепление пород серии,

вероятно, обусловлено изменением щелочно-кислотного режима расплава состава трахитов в промежуточной магматической камере, которое привело к тому, что, с одной стороны, протекало нормальное, прогрессивное увеличение кремнезема и щелочей, а, с другой—только накопление щелочных металлов.

Тиблица 1 Химический состав нефелиновых фонолитов и их числовые характеристики по А. Н. Заварицкому

Окислы	1	2	3	Числовая характе- ристика	1	2	3
SIO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O SO ₃ H ₂ O P ₂ O ₅ Π. Π. Π. Cymma	57,44 0,15 21,24 0,94 1,23 0,16 0,30 2,00 7,68 6,84 0,15 0,22 0,02 2,24 100,51	55,05 0,17 20,32 1,10 2,04 0,16 0,68 2,52 7,50 7,35 0,19 3,78 100,86	57,46 0,41 20,60 2,35 1,03 0,13 0,30 1,50 8,84 5,23 2,04 0,12	a c b s f' m' c' n t s Q a c	27.5 0.8 4.3 67.4 50.0 11.2 38.8 63.2 0.2 19.3 —14.0 34.4	28.0 0 7.4 64.6 41.5 16.0 42.5 60.9 0.2 13.2 -26.8	27.5 0.3 5.3 66.9 59.7 10.4 29.9 72.2 0.5 39.0 —11.5

- І. Нефелиновый фонолит—с. Н. Кетанлу, правобережье реки, из эндоконтактовой зоны, Хим. лабор. Упр. геол. Кирг. ССР.
- 2. Нефелиновый фонолит—с. Н. Кетанлу, левобережье реки, центральная часть силлы. Хим. лабор. ИГН АН Арм. ССР.
 - 3. Фонолит, средний по Доли.

Определяющая роль структурно-тектонических условий в формировании щелочных пород олигоцен-миоценового возраста Западного Вайка достаточно обстоятельно рассмотрены А. С. Остроумовой (2). Здесь мы котим особо отметить преемственность развития щелочной ветви базальтоидных пород области стыка Араксинской депрессии и складчатой зоны Армении, начиная с верхнего мезозоя. В верхнемеловое время эта область представляла глубокую троговую зону (3) с характерным базальтоидным магматизмом. Среди переотложенных верхнемеловых образований были обнаружены щелочные разности—нордмаркиты (4). Нами подобные породы обнаружены в коренном залегании, среди верхнемеловых эффузивов района горы Ерах.

На границе палеогена и неогена эта область еще раз явилась ареной бурной вулканической деятельности. Стратиграфическое и структурное положение пород базальт-трахитовой серии показывает, что в олигоцен-миоценовое время здесь формировалась вулкано-тектоническая депрессия, где создавались условия интенсивного накопления громадной массы вулканических продуктов. Последние, в результате последующих тектонических движений, оказались на высоко приподнятых участках рельефа.

В северо-западной части области развития пород базальт-трахитовой серии собственно эффузивные образования отсутствуют и обнажаются только корневые части вулканических аппаратов и субвулканические тела, представленные трахилипаритами и нефелиновыми фонолитами.

Таким образом, устанавливается многократное формирование ще лочной ветви пород базальтондной серии в шовной зоне двух разнородных структурно-формационных зон—субплатформенной и миогеосинклинальной.

Выявленные нефелиновые фонолиты, кроме научного интереса, име ют и определенное практическое значение в качестве возможного сырья для получения глинозема.

Институт геологических наук Академии наук Армянской ССР

Հ. Ա. ՂԱԶԱՐՅԱՆ

Հայկական ՍՍՀ-ում նեֆելինային ֆոնոլիտների հայտնաբեrման մասին

Հանրապետության սահմաններում մինչև օրս նեֆելինային ապարներ հայտնի էին Մեղրու պլուտոնում և Թեժսարի զանգվածում, Դեղինակի կողմից Արտաշատի շրջանի Ն. Քեթանլու գյուղի մոտ հայտնաբերված նեֆելին պարունակող ապարները հանդիսանում են թվով երրորդը։

Նեֆելինային ֆոնոլիտներն ունեն են ահագրաբխային բնույթ և կազմված են ալագիոկլազից, կալիումային դաշտային շպաթից, էգիրինից, նեֆելինից և ակցեսոր մելանիտից։

Հայտնաբերված ապարները հանդիսանում են Արևմտյան Վայքի բազալտ տրախիտային շարքի ծայրագույն ածանցյալը։

նեֆելինային ֆոնոլիտները, ինչպես նաև ամբողջ օլիգոցեն-միոցենային բազալտ-տրախիտային շարքի ապարները կապված են Արաքսյան իջվածքի հ Հայաստանի ծալքավոր շրջանի կցվածքային գոտու Հետ։

Վերջինս որոշիչ դեր է ունեցել նաև մեզոզոյան բազալտային շարքի ապարներում՝ ալկալային ածանցիալների առաջացման գործում։ Հայտնաբեր ված ապարները, կավահող ստանալու հարցի հաջող լուծման դեպքում, կարո են ստանալ որոշակի արդյունաբերական նշանակություն։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

1 К. Н. Паффенгольц, Кавказ—Карпаты—Балканы, Изд. АН Арм. ССР, (1971). ²А. С. Остроумова, Базальт-трахитовая формация Малого Кавказа, В ки. Щелочные вулканические формации, складчатых областей, Изд. «Недра», (1967). ³ М. А. Сатиан. Ж. О. Степанян, Л. С. Чолахян, Бюлл. МОИП, отд. теол., т. ХІП, (3) (1968). ⁴ В. А. Агамалян, М. А. Сатиан, Ж. О. Степанян, «Известия АП Арм. ССР», Науки п Земле, № 2, (1969).