УДК 577 1

ВИОХИМИЯ

Акалемик АН Армянской ССР М А Тер-Карапетян. Н. Хоанг Ким, А X Агаджанян

Непротеиногенные аминокислоты у представителей некоторых родов семейства Papilionaceae

(Представлено 13/IV 1971)

У растительных организмов выявлены многочисленные аминокислоты, присутствующие в их различных органах в виде легкорастворимых мономоров и не обнаруженные до настоящего времени в структуре белков.

Природные непротенные аминокислоты, число которых намного превышает протенногенные, являются промежуточными метаболитами в путях азотного обмена растений и биологически активными веществами, регулирующими разные функции отдельных организмов и др

В последние годы уделялось особое внимание изучению непротенногенных аминокислот как показателей, присущих таксонам разного уровня филогенеза и позволяющих разработать хемотаксономическую систему.

В исследованиях, посвященных обнаружению и характеризации непротеиногенных аминокислот у представителей различных таксоломических групп растений, значительные результаты достигнуты по отношению к семейству Papilionaceae. У представителей разных родов данного семейства изучалось наличие и распределение большого числа непротеиногенных аминокислот, обладающих разной структурой в разных органах растений (семена, листья, стебли, плоды, цветки и т. д.). Из них наиболее распространенным является канавании, обнаруженный у 68 видов из 32 родов и от 510 изученных видов, относящихся к 150 родам данного семейства (1-5). Пипеколиновая кислота обнаружена в индийских бобах (6,7).

У разных видов рода Lathyrus обнаружены латирин, 7-оксигомоаргинин, гомоаргинин, гомосерин, 0-оксалилгомосерин, 2, 1-днаминомаслянная кислота, 2-амино-7-оксалиламиномаслянная кислота, 2-амино-8-оксалиламинопропионовая кислота, 7-глутамил-8-аминопронионовитрил (*-12). У представителей родов Vicia обнаружены канавании, у-оксиорнятии, у-оксицитрулии, β-цианиоалании (10, 1, 14), Astragalus (15)-кананании, 2- V-ацетилориитии, гомосерии, у-оксинорвалии, у-глутамилфенилалании, у-глутамилтирозии, s-метилцистени, у-глутамил-s-метилцистени, Onobrychis-N-ацетилориитии (16), а у Tvifolium—содержатся также некоторые биогенные амины (17, 18).

Кроме того, у 26 видов рода Vicia, 12 видов Lathyrus и 14 видов Опортуснів изучено содержание азота и сырого протенна, количество которых считается характерным для каждого рода (16).

Настоящая работа поснящена выявлению непротенносенных аминокислот у представителей некоторых родов сем. Papilonaceae из флоры Армянской ССР.

Объектами исследования служили растения разных видов семейств Papilionaceae, собранные в июне 1969 и 1970 гг. на территории Лорийской экспериментальной базы Арм. НИПЖ. Изучались 9 видов, принадлежащих к 4 родам, в именно: Trifolium-T. trichocephalum М. В., Т. ambiguum М. В. (дикий и культурный). Т. repens L., Т. pratense L. (дикий и культурный) и Т. hybridum L.; Lathyrus-L. pratensis L.; Orobus-O. cyaneus stev.; Vicia-V. grosshelmii Ekvtim; Onobrychis-O. transcaucasica Gross.

Материалы непосредственно фиксировались в килящем 82%-ном этаноле в течение одного часа. Спиртовые экстракты отделялись от остатка декантацией, пробы подвергались анализу по следующим показателям: общий азот—микрометодом Кьельдаля, аминный азот (20), аминокислоты растворимой фракции—методом бумажной хроматографии, с использованием в жачестве растворителя Н-бутанол-уксусная кислотавода. Предварительно через бумалу, на которой были нанесены экстракты, с целью удаления пигментов пропускался ацетои, который не передвигает аминокислоты.

1. Общий и аминный изот спирторастворимой фракции вегетативной части растений (табл. 1). Данные показывают інпрокие колебання в содержании растворимого общего и аминного азота у растений как разных родов, так и разных видов, принадлежащих к одному и тому же роду. У Т. pratense и Т. ambiguum отмечается значительное повышение обенх форм азота при выращивании диких растений на опытных участках.

Исследуемые объекты значительно отличаются отношением суммы растворимого аминного азота (после гидролиза экстрактов) к растворимому общему азоту, что является признаком больших расхождений между видами в содержании неаминных форм азота. Отношение

N NH₂ особенно низко у О. cyaneus, L. pratensis и Т. repens, что

указывает на необходимость характеризации неаминных азотистых соединений у этих растений.

Исследуемые объекты сильно отличаются также отношением аминного азота до и после гидролиза экстрактов; низкие величины этого от-

Таблица 1 Общий и аминный азот спирторастворимой фракции у представителей сем. Papilionaceae в мг ⁰,, от абсолютно сухого вещества

				1 9 6 9		1 9 7 0								
Названяе растений			N	-NH ₂				N	-NH,					
	N O ULHR	до ги ро-	no se	N-NH, до N-NH, после	N NH ₂ после 100 N общий	общий	ло гнаро-	после гипродина	N-NH ₂ до	N - NH ₂ после N - общий				
O. Cyaneus	287,8	59,6	87.8	67.8	30,5	483,5	141,0	184,1	76,6	38,0				
L. pratensis	281,3	45.8	63,6	72.0	22,5	261,5	61.0	93,4	65,4	35,7				
V. grossheimli	304,6	57,9	123,4	46,9	40,4	370,1	77,0	183,7	42.0	49,6				
O. transcaucasica	143.0	82,3	85.2	26,6	59.5	246,7	123,0	168,9	93,0	68,4				
T. trichocephalum	155,2	35.0	61,3	57,2	39,5	148,8		70,8	70.0	47,5				
T. repens	223 4	71,8	106,2	67,6	47,4	153.2	1	111.8	51.9	73,0				
T. pratense (янкий)	153.2	49,8	94,6	52,6	61,7	194,3		99,1	46.5	51,0				
T. pratense (культ.)	348,2	157,6	211.5	74,5	60,7		112,0	_	74,5	48,1				
T. ambiguum (дикнй)				53,0	64.2		60,0		63,0	59,5				
Tambiguum (культ.)				62,1	58.7		111,0		88,4	56,7				
T. hybridum	-	=					116,0		65.0	68.4				

ношения являются признаком высокого содержания продуктов конденсации (пептиды и т. д.) в растворимой фракции вегетативных частей или наличия связанных соединений через аминные группы к структуре. Наибольшее количество продуктов конденсации в растворимой фракции наидено у V. grossheimii. Указанное отношение несколько колеблется у одних и тех же представителей отдельных видов в разные годы, что считаем, в основном, результатом влияния климатических условий, в частности, влажности почвы. Примечателен факт повыше-

ния отношения $\frac{N-NH_2}{N-NH_2}$ после гидролиза при выращивании Т. pra-

tense и Т. ambiguum, что свидетельствует об обогащении в этих условиях биомассы растений мономерными ("свободными") формами аминокислот.

2. Содержание непротеиногенных аминокислот и некоторых производных протеиногенных аминокислот в растениях. В табл. 2 приведены результаты качественных (по визуальной оценке) и количественных исследований, проведенных на пробах 1969 и 1970 гг.

Данные по распространению непротенногенных аминокислот у исследуемых представителей разных родов сем. Papilionaceae в общем подтверждают встречающиеся в литературе немногочисленные данные, касающиеся вегетативных частей и семян бобовых; из них наиболее характерными можно считать—ацетилорнитин, найденный нами у О. transcaucasica, а Броуном и Фоуденом у О. viciifolia.

Полученные результаты позволяют заключить, что некоторые из обнаруженных аминокислот, присутствующие исключительно у представителей одного и того же вида, могут быть приняты как компоненты, характерные для данного вида. К таковым относятся латирин, адипиновая кислота, гомоаргинин у L. pratensis и О. суапеиs, у последнего, кроме перечисленных аминокислот, присутствует также γ-оксигомоаргинин. Таким образом, по содержанию указанных непротеиногенных аминокислот виды L. pratensis и О. суапеиs сходны, а по наличию у L. pratensis пипеколиновой кислоты и у О. суапеиs γ-оксигомоаргинина они отличаются. Для всех видов Trifolum характерно наличие 4-оксипипеколиновой кислоты, канаванина, α — NH₂-пимениловой кислоты, для О. transcaucasica — δ—N-ацетилорнитина, γ-оксиорнитина и орнитина. Диоксифенилаланин присутствует лишь у V. grossheimil.

Картина редких непротеиногенных аминокислот в экстрактах вегетативных органов после гидролиза значительно меняется. Проявляются новые соединения как орнитин, дноксифенилаланин, 4-оксипипеколиновая кислота, 7-оксиоринтин и гистамин.

При гидролизе экстрактов некоторые вещества как аспарагии, о-N - ацетилорнитии и глутамии, исчезают, а соединения, входящие в их состав характеризуются в гидролизатах.

Непротенные аминокислоты и некоторые производные протенных аминокислот у представителей сем. Papilionaceae в мг % от абсолютно сухого вещества

Наименование растений	KaH	ОрН	Лат.		N. AguK		ГАМК		N. Пим. К		H	Jc	A	H.	H		H	NH2*	SH	* au.
			1	2	1	2	1	2	1	2	FOAF FOAF	LOA	ДОФ	4-01	5-01	пип.	Г-0 ОрН	Acn 1	Глу	N-9 HdO
O. cyaneus 1969 1970	_	-	13,0 54,0	29 49	144 153	27 67	23 25	4 31	-		+	+	_		сл	-	_	сл 27,2	7,4 сл	23.0 27.0
L. pratensis 1969 1970	-	-	СЛ	сл	СЛ	СЛ	2 5	сл	-	_	-	+	-	-	сл	+	-	СЛ	СЛ	СЛ
V. grossheimii 1	_	-	-	-	_	-	47 12	14 сл	-	12	-	-	+	-	-		-	21,2 9,0	13 сл	-
O. transcaucasica 1	-	102 254	-	_	_	_	34 12	сл сл	-	-		-		-	*	+	21,1	сл 10		+
T. trichocephalum 1	+	-	-	_	-	-	сл 14	сл	7 сл	13 сл	-	-	_	+	+	+	_	5	-	-
T. repens 1	+	-		_	-	-	сл 6	сл	41	19 сл	-		_	+	-	+	-	11	4	-
T. amblguum (дикий)	+	-	-	-	-	-	сл 7	СЛ	3	22 сл	-	-	_	+	-	+		11 8	-	-
T. ambiguum (культ.)	+	-	-	_		-	сл 7	СЛ	13 сл	15 сл	-	-	-	+	-	+		10 4		-
T. pratense (дикий)	+	-	-	-			сл 8	СЛ	7	21 сл	-	-	-	+	_	+	-	сл 5		-
T. pratense (дикий) T. pratense (культ.) T. hybridum	+	-	-	-	-	-	СЛ 7	СЛ	7	20 сл	-	-	-	+		+	-	11 2		
T. hybridum	+	-	-	-	-	-	7	СЛ	СЛ	СЛ	-	-		+	-	+	-	5		

определения проведены на экстрактах до гидролиза или путем сравнения результатов до и после гидролиза.

Знаками + и — отмечены соответственно наличие и отсутствие указанных соединений по визуальной оценка,

¹⁻до гидролиза;

²⁻после гидролиза.

Гаммааминомаслянная кислота (Г.МК) и $_{\rm д}$ -NH $_{\rm g}$ - адипиновая кислота в процессе гидролиза частично разлагаются, а количество других аминокислот увеличивается, что дает основание полагать о наличин последних в связанном виде (пептиды и др.).

Количественная оценка непротенногенных аминокислот у представителей отдельных родов выявила следующие особенности: наибольшее накопление ГАМК найдено у О. cyaneus, V. grossheimii, O. transcaucasica, низкие количества у всех видов Trifolium, и еще меньше у L. pratensis. По «-NH₂-пимелиновой кислоте замечаются значительные расхождения между видами рода Trifolium. При этом наивысшие количества найдены у Т. repens и Т. ambiguum, низкие количества—у всех других видов.

Как показали двухгодичные опыты аспарагии обнаружен у всех исследуемых видов, кроме L. pratensis; однако, его количество варьирует довольно широко, 8-N-ацетилориитии найден в высоких количествах у О. cyaneus, О. transcaucasica, в виде следов у L. pratensis, а у всех других видов отсутствует. Глутатион найден в значительных количествах у V. grossheimli, в меньших количествах у О. суапець и не обнаружен у остальных изученных видов:

В некоторых случаях найдено значительное повышение аминокислот при возделывании диких форм в культурных условиях: у Т. pratense аспарагин присутствует в виде следов у дикорастущей, и в значительных количествах у культурной формы. ГАМК значительно увеличивается при культивировании дикой формы Т. ambiguum, но мало меняется у Т. pratense.

Вышеприведенные данные являются новыми примерами значимости непротеиногенных аминокислот и их производных для характеристики химичеокого состава и азотного метаболизма растении; они служат матерналом для более широкого использования азотистых соединений в хемотаксономических целях.

Ереванский государственный университет

Հայկական III2 ԳԱ ակագեմիկոս Մ. Ա. ՏԵՐ-ԿԱՐԱԳԵՏՑԱՆ. Ն. ԽՈԱՆԳ ԿԻՄ, Ա. Խ. ԱՂԱԶԱՆՑԱՆ

Papilionaceae ընտանիքի մի քանի ցեղերի ներկայացուցիչների ոչ-պրոտեինոգեն ամինաթթուները

րթելութրերը։

հրանի լուսու փորձակայանի տերիտորիայից վերցրած թիթեռնածաղկավորների ընտանիքի մի քանի ցեղերին պատկանող տեսակների վեգետատիվ օրգանների ընդ ւանուր, ամինային աղոտի ձևերը և ւաղվագյուտ ոչ-պրոտեինոգեն ամիհաթթուները։

Ուսումնասիրված տեսակները նշանակայիորեն տարրերվում են լուծելի ամինային ազոտի և ընդհանուր աղոտի արարերությամբ, Հիդրոլիզից առաջ և շիդրոլիղից հետո ամինային ապոտների հարաբերության ցածր արժեթը վրկայում է պեպտիդների և սպիտակուցային բնույթի այլ նյութերի առկայության մասին, ցանովի T. pratense և T. ambiguum տեսակների մոտ այդ հարաբեբությունը աձում է ի հաշիվ ազատ ամինաթթուների։

Ստացված տվյալները թույլ են տալիս ենթադրելու, որ ուսումնասիրված ամինաթթուներից մի քանիսը կարող են համարվել տվյալ տեսակին բնորոշ։ Դրանցից են լատիրինը. — Ի ադիպինաթթուն, — Ի ացետիլօրնիտինը, 5- օրսիպիպեկոլինաթթուն, հոմոարգինինը, L. pratense և O. cyaneus տեսակենքի մոտ Աշված ամինաթթուներից թացի հայտնաբերվել է նաև դ - օրսիհոմոարդինին, իսկ L. pratense մոտ նաև՝ պիպեկոլինաթթու, որով և տարրերվում են այս տեսակները։

լությամը, -ացնտիլորնիտինի, դ-օքսիսենիտինի և ունիտինի ապաtense ուրոպես -ացնտիլորնիտինի, դ-օքսիսենիտինի և ունիտինի ապաtense ուրոպես - ացնտիլորնիտինի, դ-օքսիսենիտինի և ունիտինի ապա-

Հազվագյուտ ոչ պրոտնինոգնն ամինաթթուննրի որակական պատկերը նշանակալի փոխվում է մզվածքի քիդրոլիզից հնտու Շնորհիվ դրան, հայտնաքնրվում են օրնիտին, դիօրսիֆենիլալանին, 4-օքսի պիպեկոլինաթթու, պիպեկոլինաթթու, 7-օքսիօրնիտին և հիստամին։

Ստացված տվյալները մատնանչում են ոչ-պրոտեինոգեն ամինաββուննրի և նրանց ածանցյալների նշանակությունը բույսերի ազոտային նյութափոիւանակության պրոցեսներում և կարող են օգտագործվել ջեմոտաքսոնոմիական նպատակներով։

ЛИТЕРАТУРА— ԳՐԱԿԱՆՈՒԹՅՈՒՆ

¹ B. A. Birdsong, Canad. 1. Bot., 38, No. 4 (1960). ² B. L. Turner and J B Harborne, Phytochemistry, vol 6 (1967). ³ B. Tschlersch and B. A Birdsong, Flora, 150, No. 1 (1961). ⁴ E. A. Bell, Biochem. J. 70, No. 4 (1958). ³ E. A. Bell, Biochem. J. 75, No. 3 (1960). ⁶ A. N. Inamdur, J. Scient and Industr. Res., Bc19 (1960). ¹ A. D. Deshmukh, J. Scient and Industr. Res., c 20, No. 11 (1961). ⁶ E. A. Bell, Biochem. et biophys. acta, 47, No. 3 (1961). ⁹ E. A. Bell, Biochem. J., 83, No. 12 (1962). ¹⁰ E. I. Bell, Biochem. J. 91 (1964). ¹¹ S. L. N. Rao, Biochemistry, No. 2 (1963). ¹² J. Przybylska and 7. Rymowicz, Genetika polonica, 6, No. 1—2 (1965). ¹³ C. Ressler, J. Biol. chem., 237 (1962). ¹⁴ E. A. Bell, A. S. L. Tirlmanna, Biochem. J. 97, No. 1 (1965). ¹⁵ P. M. Duntll and L. Fowden, Phytochemistry, vol. 6 (1967). ¹⁶ D. H. Brown and L. Fowden, Phytochemistry, 5, No. 5 (1966). ¹⁷ H. D. Fowler, Nature (Engl.), 193, No. 4, 815 (1962). ¹⁰ H. Neumark, Nature (Engl.), 1955, No. 4,841 (1962). ¹⁰ A. B. Благовещенский, Е. В. Колобкова, Эволюционная биохимия растения АН СССР, Изд., Наукат. М., 1964, ²⁸ W. S. Harding, R. M. Mac Lean, J. Biol. chem., vol. 24 (1916).