LIII 1971

MATEMATHKA

4

УДК 51946

Р О. Назарян

О разложении некоторых простых вещественных групп Ли

(Представлено чл-корр АН Армянской ССР Р. А. Александряном 20/V 1971)

Предполагается, что все рассматриваемые группы Ли и их подгруппы являются связными. Тройка (G, G', G''), где G группа \mathcal{A} и, G'и G'' ее собственные подгруппы Ли, называется разложением, если G = G'G'', т. е. если каждый элемент $g \in G$ представляется в виде g = g'g'', где $g' \in G'$, $g'' \in G''$. Разложение G = G'G'' называется редуктивным, если G—редуктивная группа Ли, G', G'' — редуктивные в Gподгруппы \mathfrak{I} и. Разложение называется максимальным, если G', G''максимальные подгруппы в G. В работе (1) найдены все редуктивные и все максимальные разложения некомпактных простых вещественных групп Ли. В настоящей работе рассматриваются минимальные разложения, т. е. такие разложения G = G'G'', для которых не существует подгрупп $C_0 \subset G'$, $G_0' \subset G''$ таких, что тронка (G, G_0, G_0') является разложением и что $G_0 \neq G'$ или $G_0' = G''$. Мы находим все минимальные разложения групп SO(p, q), SU(p, q), Sp(p, q) и всех нормальных вещественных простых групп Ли. Знание всех максимальных и всех минимальных разложений этих групп дает возможность легко найти все их разложения. Для групп SO(1, q), SU(1, q), Sp(1, q) это было сделано в работе (1). Пусть G = G'G'' - разложение. Обозначим соответственно через \mathfrak{M} , \mathfrak{M}' , \mathfrak{M}'' алгебры Ли, отвечающие группам G, G', G''. Тогда $\mathfrak{M}=\mathfrak{M}'+\mathfrak{M}''$ (1). Мы будем описывать разложения групп Ли при помощи соответствующих разложений алгебр Ли.

Разложение $G \equiv G'G''$ будем называть разложением без пересечения, если $\mathfrak{M}' \cap \mathfrak{M}'' = 0$. Такое разложение является минимальным. Примером разложения без пересечения является так называемое разложение Ивасава G = KT, где K— максимальная компактная в G подгруппа, а T—максимальная треугольная в G подгруппа (*).

Пусть \mathfrak{M} — полупростая алгебра Ли над |R| И-система простых корней этой алгебры Ли. $\Pi_1 \subset \Pi$ подсистема корней, не равных нулю на некомпактной части картановской подалгебры, μ_r -параболическая подалгебра в \mathfrak{M}_r соответствующая подсистеме $\Gamma \subset \Pi_1$. Рассмотрим

 $\Gamma = \emptyset$ и положим u = m + n., где $m \subset h_- + v$, причем m изоморфно проектируется на h = c. Тогда u - k-подалгебра т. е. $\mathfrak{M} = u + k \circ v$ и это есть разложение без пересечения. Назовем это разложение обобщенным разложением Пвасава.

Теорема. Минимальные разложения групп SO(p, q). SU(p, q). Sp(p, q) и нормальных вещественных простых групп Ли исчерпываются разложениями, перечисленными в таблицах 1, 2 а все остальные минимальные разложения имеют компактную Ж... В таблице 1 даны все минимальные редуктивные разложения.

		Таблица 1		
DR .	M.	Me"		
sl (2n, R)	sp (n, R)	sl(2n-1, R)		
su (2p, 2q)	sp (p, q)	so(2p-1, 2q) so(2p, 2q-1)		
su(n, n)	sp (n, R)	su(n-1, n)		
so (3, 4)	G_z	so (1, 4) so (2, 3)		
so (2p, 2q)	su (p, q)	so(2p-1, 2q) so(2p, 2q-1)		
so(n, n)	sl(n, R)	so(n-1, n)		
so (4p, 4g)	sp(p, q)	so(4p-1, 4q) so(4p, 4q-1)		
so (2n, 2n)	sp (n, R)	so(2n-1, 2n)		
so (8, 8)	so (7, 8)	so (1, 8) so (4, 5)		
so (4, 4)	so (3, 4)	so (1, 4) so (2, 3)		

Метод нахождений мянимальных разложения состоит в следующем. Пусть G = G'G''—минимальное разложение группы G. Обозначим через K, K', K'' максимальные полупростые компактные подгруппы в G, G', G'' соответственно такие, что $K \supset K'$, K''. Из работы (1) следует, что тройка (K, K', K'') является разложением. Пусть G', G''—максимальные подгруппы в G, содержащие G', G'' соответственно, K', K''—их максимальные полупростые компактные подгруппы. Все разложения компактных групп Ли подробно изучены в работе (1). Результаты ее позволяют янно найти все разложения K = K', K'', где

 $K' \subset K'$, $K'' \subset K''$. Подгруппы G, G'' описаны в работе (¹). Ищем те подгруппы $G' \subset G'$ и $G'' \subset G''$, которые содержат соответственно K', K'' и из этих подгрупп выбираем те, которые дают минимальное разложение.

Ta	бл	u	ца	2
----	----	---	----	---

2002	DR'	$\pi_1 \setminus \Gamma$	DR"
sl (2n, R)	$sl(2n-1, R) + n_r$	21	$sl(n, C)$ $s_{p}\left(\frac{n}{2}, C\right)$ $su^{*}(2m) m = \frac{n}{2}$
su(p, q) $0 1$	sl(p, C)rn _r	ap, a4	su (1, q)
su(2p, 2q) 0	$su(2p-1, 2q-1)+n_r$	$a_1, a_{2p+2q-1}$	sp(p, q)
so (p, q) 0 2	$sl(p, R) + n_r$	a _p	so (1, q)
so (2p, 2q) р или q нечет.	$so(2p-1, 2q-1)+n_c$	a ₂	su (p, q)
so (4p, 4q)	$so(4p-1, 4q-1)+n_r$	a ₁	sp (p. q)
sp(2n, R)	$sp(2n-1, R) + n_r$	α ₁	sp (n, C)
sp (p, q)	$su^*(2p) + n_t$	a _{2,p}	sp (1, q)

Таблица З M" M' $\pi_1 \setminus \Gamma$ M $sl(p, |R) + n_r$ su (1, q) so (p, q) ap 0 2 $sl(p, |R)+c^-+n_r$ so (q) $sl(p, C) + n_r$ su(1, q) su(p, q)ap, aq 0 1 $sl(p, C) + c^- + n_r$ su (q) sp (p, q) $|su^{\circ}(2p)+c_{r}^{-}+n_{1}|$ a_{2p} | sp(q)0

Следствие. Все разложения без пересечения групп SO(p, q), SU(p, q), Sp(p, q) исчерпываются разложениями, перечисленными в табл. 3 и обобщенными разложениями Ивасава.

В заключение выражаю искреннюю благодарность А. Л. Онищи-ку за постоянное внимание и руководство.

Ереванский государственный университет

Ռ. Հ. ՆԱԶԱՐՅԱՆ

Ուոշ իւական պաւզ էիի խմբեւի վեւլուծումների մասին

Հողվածում դիտարկվում է (SO(p,q),SU(p,q),Sp(p,q)) խմբերի և Լիի նորմալ իրական պարզ խմբերի վերլուծումները։ Գտնված են այդ խմբերի բոլոր այն վերլուծումները, որոնք Իվասավայի վերլուծումների հետ միասին սպառում են մինիմալ ռեդուկտիվ և մնացած բոլոր մինիմալ վերլուծումները։ Գտնված են նաև SO(p,q),SU(p,q),Sp(p,q) խմբերի բոլոր առանց հատման վերլուծումները։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒР ՑՈՒՆ

¹ А. Л. Онищик, Матем сб., т. 80 (122), 4, 553—599, (1969). ² С. Хелгасон, Днфференциальная геометрия и симметрические пространства, изд. «Мир», М., 1965. ³ А. Л. Онищик, Труды Моск. матем об ва, XI, 199—242 (1962).