-	11.3	Ч	U. I	ilk	և	U	12	•	ԴԻ	S II	h	6-0	01	իթ	բթե	Þ	٦	ԼԿ	IL P	p,l	ՄԻ	U.	8 h		9	ti ti	N b	38	51	9.0
Д	0	K	Л	A	Д	Ы	A	K	A	Д	E	м	И	н	Н	A	У	K	A	Ρ	M	Я	Η	C	K	0	И	C	С	P

LIII	1971	2

УДК 539.22

БИОФИЗИКА

В. Г. Адонц, Т. М. Бирштени, А. М. Ельящевич

Математическое моделирование складчатой в структуры в коротких цепях

(Представлено чл-корр АН Армянской ССР М.Л. Тер-Микаеляном 15/V 1971)

Хорошо известно, что отдельные участки целей глобулярных белков и синтетических лолипентидов могут образовывать упорядоченные вторичные структуры, стабилизуемые водородными связями между пептидными группами. Существуют два основных типа вторичных структуросновных типа вторичных структуроспираль и плоская складчатая β-структура. Переход 2-спираль – клубок в растворах неоднократно изучался в ряде теоретических и экспериментальных работ (см., например (¹)).

Эколерименты локазали, что существуют полишептиды, образующие внутримолекулярную окладчатую β-структуру (²), причем изменение растворителя или других условий может вызвать для таких полишептидов переход внутримолекулярная β-структура—клубок. В настоящее время отсутствует строгая теория описания самой β-структуры и перехода β-структура—клубок в завиоимости от внешних условии. Существующие теоретические работы (³) рассматривали лишь гипотетические модельные цепи бесконечной дляны. Целью настоящей работы является математическое моделирование складчатой β-структуры в конечных цепях. Мы сопоставим полученные результаты с результатами анализа бесконечной модельной цепи и продемонстрируем влияние конечности системы на характер зависимостей параметров структуры от внешних условий.

В работе Цванцига и Лауритцен з (^{3, 4}) образование окладчатой структуры рассматривается с помощью следующей модели: цепочка из N сегментов может окладываться в «гармошку» из (n+1) участков с

числом сегментов в каждом x_i ($i = 1, 2, \dots n + 1$) так, что $\sum_{l=1}^{n+1} x_l =$

= N (рис. 1). Энергия E_n такон складчатой структуры является суммой энергии взаимодействия контактирующих друг с другом сегментов цепи и энергии, теряемой на изломе цепи, т. е.

$$E_n = u \cdot n + \varepsilon \sum_{j=1}^n \min(x_j, x_{j+1})$$
(1)

где u энергия одного излома, а — ε — энергия взаимодеиствия контактирующих сегментов (все энергии берутся в единицах kT). Для такой модели статистическая сумма равна Q(N, ...) = где суммирование ведется по всевозможным разбиениям на участки с уче-

том условня
$$\sum_{i=1}^{N} x_i = N$$
.

Рис. 1. Схематическое изображение модели складчатой полимерной молекулы

Переходя к модели непрерывной цепи ("липкой ленты"), в которой излом может осуществляться в любом месте цепи, а не только в местах стыка сегментов, и участки могут включать любое нецелое число сегментов, авторы (³) заменяют статистическую сумму интегра-

лом

$$Q(N, \varepsilon, q) = \sum_{n=0}^{\infty} q^n \int \cdots \int e^{-\varepsilon} \sum_{j=1}^{n} \min(x_j \cdot x_{j+1}) dx_1 \cdots dx_n$$

$$\binom{n+1}{\sum_{i=1}^{n} x_i = N}$$
(2)

где q = e^u — вероятность излома на единицу длины (1 сегмент) в отсутствие взаимодействий.

Расчет статистической суммы и характеристик такой модели, провеленный для цепи: бесконечной дляны, показал, что поведение системы определяется величиной $\frac{1}{q}$. При — = 4 система претерпевает фазовый переход 2-го рода из состояния частичной упорядоченности при $\frac{1}{q} < 4$ в состояние полной упорядоченности при — > 4. В полностью упорядоченном состоянии среднее число изломов *n* на единицу длины равно 0, а доля сегментов, находящихся в контакте в достигает 1. Мы использовали ту же модель при анализе поведения молекул конечной длины. Поскольку аналитический расчет интеграла (2) при фиксированном N выполнить не удается, задача решалась нами методом математического моделирования этой системы на ЭВМ (методом Монте-Карло). Для этого статистический интеграл (2) был представлен в виде

$$Q(N, z, q) = \sum_{n=0}^{\infty} \frac{(qN)^n}{n!} \int_{0}^{1} p_n(\theta) e^{-zN\theta} d\theta$$
(3)

где $b^n = \frac{n}{n+1}$ — максимальная степень связанности, $p_n(b)$ — доля конфигураций цепи, в которых при *и* изломах в контакте находятся b N сегментов и

$$\int_{0}^{\theta_{\max}} p_{n}(\theta) d\theta = 1.$$

Поскольку цепочка непрерывна, ра (в) не зависит от N. Множитель (<u>иМ</u>, стоящия перед интегралом, дает вероятность осуществления п n!изломов. Как видно из (3), Q(N, s, q) оказывается функцией только лвух параметров: qN и eN, имеющих смысл среднего числа изломов во всей цени без взаимодействия (при = 0) и полной энергии "слипания", когда все сегменты цепи находятся в контакте. Удобно ввести в качестве параметров среднюю энергию, приходящуюся на один жесткий участок $\varepsilon = -\frac{\varepsilon}{a}$ (размеры участка берутся для цепи без взаимодействия := 0) и среднее число изломов в цепи без взаимодействия q.N, являющееся мерой конечности цепи. Следует отметить, что хотя в (3) суммирование по п должно производиться от О до ∞, при фиксированном qN члены с n qN при возрастании n вносят все меньший вклад, поэтому при небольших qN суммирование по n в (3) можно ограничнть некоторым пол. Функцию р. (в) для п от 1 до 30 мы вычисляли методом Монте-Карло с помощью ЭВМ, выбрасывая случайным образом цепочки с и изломами и подсчитывая степень связанности $\theta = \sum min$ (mail (х, х, 1). На рис. 2 изображены пормированные функции распределения $p_n(6)$ для $n = 3, 6 \cdots 30$. Расчет интеграла в (3) проводился с помощью этой функции при различных в N путем суммирования по 128

равным интервалам 0, т. е. путем подсчета суммы $\sum_{j=1}^{12} p_{\pi_j}(\theta_j) e^{-iM_{j\pi_j}}$

Значения среднего числа изломов в цепи л_{ч.} (г*) и степени связанности U_{ч.} (г) вычислялись по формулам

$$\overline{n}_{qN}(\varepsilon^*) = \frac{\partial \ln Q_{qN}(\varepsilon^*)}{\partial \ln qN} = \frac{\sum_{n=0}^{\infty} \frac{(qN)^n}{n!} \left(\sum_{l=1}^{1m} np_{nj}e^{-iMn_{nj}}\right)}{Q_{qN}(\varepsilon^*)}$$

н

$$\theta_{qN}(\varepsilon^*) = \frac{\partial \ln \theta_{qN}(\varepsilon^*)}{\partial \varepsilon^*} = \frac{\sum \frac{(qN)^n}{n!} \left(\sum \theta_{n!} p_{n!} e^{-\varepsilon N \theta_{n!}}\right)}{Q_{qN}(\varepsilon^*)}$$
(5)

Расчет производился при фиксированных значениях qN от 1 до 20 и варьировании e^* от 1 до 12 для $n_{max} = 30$

Рис. 2. Функции распределения *p_n*(⁹) степени связанности ⁹ молекулы для разных *n* (значения *n* указаны на кривых). Число случайных выбросов для каждого *n* равнялось ~ 300,000

Результаты расчетов показаны на рас. 3—5. Проанализируем эти результаты, сопоставляя их с результатами расчета (3), чтобы показать, как влияет конечность системы на характер се складывания.

Степень связанности сегментов $\theta_{qN}(z)$ (рис. 3) с ростом z^4 монотонно растет для всех qN, затем ныполаживается, однако, даже для цепся, содержащих 20 жестких участков при z=0, предель-

125

(4)

ное значение 0 отличается от $\theta = 1$ для бесконечной модели в области ϵ^* 4, более чем на $10^{\circ}/_{0}$.

Никаких видимых особенностей в поведении функции в окрестности точки г — 4 не обнаруживается. Для бесконечной же системы, кривая () в точке г^а = 4 имеет разрыв производной (3).

Рис. 4. Зависимости *n* — среднего чисаа изломов в цепи от с^{*} для различных *дN*

Среднее число изломов *n* (рис. 4) ведет себя с изменснием ε^* различно в зависимости от длины системы, т. е. значений qN. В системах с малым числом складок $qN \leqslant 7$ с ростом ε^* величива *n* монотонно увеличивается, нет никакого отличия в поведении до $\varepsilon^* = 4$ и после. В системах с qN = 8, 9, 10 наблюдается слабый рост *n* при увеличении ε ст 0 до 1, затем *n* убывает, достигает минимума в районе $\varepsilon^* = 4$ и вновь начинает расти.

91=1+7

Число изломов для этих систем при $\mathbf{z}^* = 12$ на 10°_{\circ} больше первоначального при $\mathbf{z} = 0$. При дальнейшем увеличении qN от 10 до 20 поведение *п* начинает все более приближаться к поведению *п* для бесконечной модели. Увеличение \mathbf{z}^* от 0 приводит к убыванию

n, после $\varepsilon = 4$ выходит на плато. Для qN = 20 уменьшение $n \in$ увеличением ε^* столь велико, что в области плато число изломов в полтора раза меньше по сравнению со значением n = qN при отсутствии взаимодействий.

Такое поведение величины *п* можно объяснить следующим образом: для малых qN вынгрыш в энергии существенно увеличивается при увеличении числа изломов, несмотря на потерю энергии на новом изломе; а для больших qN, когда предельная степень связывания в состоянии полной упорядоченности слабо зависит от числа изломов ($\theta_{max}^{10} = 0.91$; $\theta_{max}^{10} = 0.95$), цепочка при больших ε^{10} образует меньшее число складок, так как при этом легче дойти до больших, хотя и меньших θ_{max} значений θ (см. рис. 2).

Отношение $\frac{n}{qN}$ (рис. 5), характеризующее собой изменение числа изломов с изменением ε^* , отнесенное к числу изломов при $\varepsilon = 0$, является для бесконечной модели универсальной функцией ε не зависящей от энергии излома. Эта функция четко демонстрирует особенности в поведении систем с малым и большим числом изломов, о которых шла речь выше. Кривые с малыми qN накладываются друг на друга, образуя линию, почти параллельную оси абсцисс. С увеличением qN кривые все более приближаются к кривой с $qN \to \infty$, которая терпит разрыв производной в точке $\varepsilon = 4$.

При росте энергии связи конечная цепь складывается в более компактную структуру, однако в отличие от бесконечной модели, претерпевающей фазовый переход 2-го рода в точке $\varepsilon^* = 4$, переход в конечной цепи происходит сравнительно плавно.

Выявлено отличие между системами с малым числом складок $(qN \leq 7)$ и системами с большим числом складок от 7 до 20. Для

больших систем в области є^{*} = 4 в ходе зависимостей, характеризующих систему, появляются тенденции к переходу.

Институт высокомолекулярных соединений АН СССР

Վ. 2. ԱԳՈՆՑ, Տ. Մ. ԲԻՐՇՏԵՑՆ, Ա. Մ. ԵԼՑԱՇԵՎԻՉ

Կաբճ չղթաներում ծալքավոր β–կառուցվածքի մաթեմատիկական մողելացումը

Մոնտև-Կառլոյի մեկոդով գիտված է վերջավոր երկայնուկյան ծայթավոր β-կառուցվածթի մոդելը։ Ստացված արդյունջները համեմատված են անամման մոդելի արդյունջների հետ։ Յույց է տրված, որ կապի էներգիայի ավելացման հետ վերջավոր շղթան ծալվում է կոմպակտ կառուցվածթի, որտեղ այգ պրոցեսը ֆաղային երկրորդ սեռի անցումների բնույի է կրում, վերջավոր մո-

ղելում անցումը սահուն էւ Հայտնարերված է տարբերություն քիչ 9 N < 7 և մեծ 7-ից 20 քանակով ծալվածը ունեցող համակարգերի մեջ։

ЛИТЕРАТУРА— ԳԲԱԿԱՆՈՒԹՅՈՒՆ

¹ 7. М. Бирштейн и О. Б. Птицын, Конформации макромолекул, Изд. "Hayка", М., 1964. ² Е. V. Anufrieva et all. J. Pol. Sci. P. С. 16, 3533, 1968. ³ R. Zwanzig. Lauritzen J. I., J. Chem. Phys. 48, 3351, 1968. ⁴ Т. М. Бирштейн, А. М. Ельншевич. Скворцов А. М., Молек, биология 5, 1, 1971. ⁵ J. Lauritzen and R. Zwanzig, J. Chem. Phys. 52, 3740, 1970.

