доклады академии наук армянской сср LIII

УДК 549.214

МИНЕРАЛОГИЯ

Г. Г. Мирзоян

О находке муассанита в магматических породах Северной Армении

(Представлено академиком АН Армянской ССР И. Г. Магакьяном 5/IV 1971)

Муассанит редко встречающийся в природе минерал, впервые обнаружен Муассаном в железном метеорите из Каньона Днабло в штате Аризона, США, в виде мелких зерен вместе с мельчайшими алмазами; минерал определен по физическим свойствам—твердости, удельному весу, габитусу кристаллов. Находки природного муассанита чрезвычайно ограничены. Тем не менее имеется ряд работ, указывающий на весьма различные условия образования минерала.

Муассанит в ассоциации с другими минералами многими исследователями был обнаружен и описан в кимберлитах, порфировых перидотитах, траппах Восточной Сибири, Эльджуртинских пранитах, карбонатитах, вулканических брекчиях Чешских Средних гор и в некоторых других изверженных породах —).

В приводимых в литературе данных подчерживается важное эначение муаосанита жаж опутника алмаза (2). С другой стороны муаосанит служит критерием для выяонения некоторых вопросов условий формирования магматических пород (7).

Нами муассанит был обнаружен и установлено его относительно широкое распространение при изучении минерального состава протолочных проб коренных пород—кварцевых плагиопорфиров (кварцевых дацитов), «альбитофиров» (альбитизированных липаритов), «кератофиров» (липарито-дацитов), дацитов, андезитов, туфов, где содержание минерала колеблется от единичных зерен до 0,9 г/т. В тяжелой фракция наиболее часто истречаются следующие минералы: магнетит, самородное железо, ноцит, ильменит, лимонит, гематит, галенит, пирит диркон, апатит, монацит, шунгит, гранат, корунд, анатаз, сфен, эпидот, пироксен, флюорит, рутил, турмалин, мужссанит и т. д.

Физические, химические и оптические овойства муассанита, обнаруженного нами в магматических породах Северной Армении, полностью соответствуют таковым, принеденным в литературе. Минерал встречается в виде остроугольных обломков неправильной формы с раковистым изломом. Спайность плохо выражена. Крупность выделенных зерен

меньше 0,5 мм, так как пробы дробились до крупности 0,5 мм. Минерал имеет различную окраюку—серую, желтовато-розовую, бледно-голубую, зеленую, синевато-зеленую, индигово-синюю, черную и т. д. Нередко он бывает бесцветным. Окраска меняется иногда в пределах одного и того же зерна. Блеск минерала сильно алмазный до металлического, иногда жирный. Твердость на разноориентированных разрезах минералон, помещенных на специально приготовленный брикет из пластмассы, по данным микротвердометра ПМТ-3, средняя по восьми определениям при оптимальной нагрузке твердость равна 3780—3858 кг/мм², что примерно на 1193 кг/мм² больше твердости муассанита, описанного С. И. Лебедевой (в). По этим данным твердость муассанита равна 2473—2778 кг/мм², что в переводе на шкалу Хрущова соответствует 9,6.

Для изучения оптических свойств минерал погружался в высокопреломляющую иммерсионную жидкость. Наблюдения показали, что показатель преломления значительно больше 1,780. Анизотропный с высокими интерференционными окрасками. Редко имеет аномальное двупреломление с цветами интерференции от темно-керой до фиолетовой. Значительно реже встречаются зерна с волнистым угасанием. Иногда плеохрончный в пределах окраски минерала.

Полуколичественный спектральный анализ пробы минерала весом 1.9 мг. выполненный в спектральной лаборатории Института геологических наук АН Армянской ССР, показал присутствие Si, Al, Mg, Ca, Ti, Mo, Cu, Na (табл. 1).

Таблица 1

Минерал	Элементы 3 лементы									
	Si	AI	Mg	Ca	Ti	Mo	Cu	Na		
Муассанит	0,3	0,003-0,01	~0,002	0,03	~0,001	0,0003	~0,0001	~0,03		

С целью предварительной идентификации была получена дебаеграмма муассанита (рис. 1). Величины межплоскостных расстояний изучаемого минерала были сопоставлены с данными для нокусственного кар-

Рис. 1. Дебаеграмма муассанита (камера РКД, Си-излучение, Ni-фильтр)

бида кремния—«SiC (9) и с муассанитами других районов. Как видно из табл. 2, неследованный нами минерал является природным карбидом кремния— муассанитом.

711111111111111111111111111111111111111	матиче	анит из маг- ских пород юй Армении	Искусственный муассанит 2 SIC — II (*)		Kannae	инт на вул- ских брек- шских Сред- р (6)	муассанит из фе- нитов Восточной Сибири (2)	
2 = 2	J	$\frac{dz}{n}$	1	ila n	1	dz	,	dz
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38	109332214018 943 122 615 551638 919	2,637 2,508 2,364 2,177 2,103 1,994 1,821 1,615 1,615 1,530 1,153 1,417 1,110 1,088 1,046 1,036 1,036 1,036 1,036 1,036 1,036 1,036 1,036 1,036 1,036 1,036 1,036 1,036 1,036 1,036 1,036 1,037	6751 3 3 8 53 83322 114 354524391620	2,61 2,51 2,36 2,19 2,00 1,67 1,54 1,419 1,329 1,309 1,285 1,253 1,217 1,131 1,087 1,061 1,042 1,042 1,061 1,042 0,972 0,986 0,972 0,953 0,940 0,911 0,888 0,873 0,862 0,841 0,837	4 8 5 10 5 3 1 10 2 2 3 3 6 3 5 1 2 7 6 8	4,21 3,34 2,62 2,50 2,34 2,17 1,99 1,80 1,66 1,53 1,41 1,37 1,310 1,286 1,257 1,041 0,999 0,986 0,971 0,953 0,939 0,911 0,887 0,887	1 1 5 8 5 3	(2,90) (2,77) 2,62 2,51 2,37 2,18 1,815 (1,699) 1,540 (1,451) 1,420 1,373 1,330 1,313 1,256 1,220 (1,104) 1,089 (1,076) 1,000 (0,980) 0,974
39 40	6	0,805 0,802	3 5	0,811 0,802	2	0,803		=

Присутствие муассанита в породах Алавердского рудного района можно объяснить заражением магмы углеродом за счет метаморфического комплекса фундамента. Муассанит возможно выкристаллизовался на большой глубине, в условиях высокого давления и температуры за счет первичного углерода в процессе поднятия магмы.

Судя по ряду выявленных нами характеристик—физическим, химическим и оптическим свойствам, не исключена возможность, что при более детальном изучения совместно с муассанитом может быть обнаружен и алмаз.

Из вышензложенного видно, что редко встречающийся в природе минерал—муассанит, с одной стороны, наряду с другими признаками может служить поисковым критерием на алмаз и считаться его спутилком, а с другой стороны—находка муаосанита в разных по составу и типу породах является дополнительным аргументом для выяснения условий образования магматических пород и форм переноса углерода и т. 2.

Институт геологических наук Академии наук Армянской ССР

💄 Գ. ՄԻՐՉՈՅԱՆ

Հյուսիսային Հայաստանի հռային ապառներում մուասանիտի հայտնաբեռման մասին

Հողվածում նչված են Հայկական ՄՍՀ Ալավերդու հանքային շրջանի տարլեր հրային ապարներում մուասանիտի հայտնաբերման փաստեր։ Ուսումնասիրված են մուասանիտի հիմնական ֆիսիկա-օպտիկական հատկանիչները և բերված են նրա սպեկտրալ ու ռենտգենաստրուկտուրային հետաղոտուԹյունների տվյալները։

Մուասանիտի գոյացումն ապարներում բացատրվում է հրահալման Հարստացմամբ ածխածնով՝ հիմքի մետամորֆային ապարների վերահալման Հաշվին։

Մուասանիտը մի կողմից կարող է որոնողական չափանիշ ծառայել (ալլոց հետ միասին) ալմաստի հայտնաբերման համար, իսկ մյուս կողմից նրա առկայությունը տարրեր կաղմի հրային ապարներում լրացուցիչ փաս-տարկ կարող է հանդիսանալ նրանց առաջացման պայմանների յուրահատ-կությունների բնութագրման, ինչպես նաև ածխածնի տեղաշարժման ձևերի պարզաբանման ժամանակ։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՑՈՒՆ

1 Л. Л. Сухомазова, И. Н. Лисий, А. И. Таскасва, Б. И. Озерникова, Матер. по геол. и полезн. исков. Вост. Сибирт, пып. 111, Пркутск, 1958. 2 А. П. Бобриевич. В. А. Калюжный, Г. И. Смирнов, ДАН СССР, т. 115, № 6 (1957). 3 А. Ф. Китайник, Матер, по геол. и полезн. ископ. Вост. Сибири, вып. 111, Пркутск, 1958. 4 В. В. Ляхович. А. Д. Червинская, Тр. ИМГРЭ АН СССР, вып. 7, 1961. 3 С. Е. Глушкина, Г. В. Ициксон. Б. И. Лови. Зап. Всесоюзи. Минер. общ., ч. 92, вып. 6, (1963). 4 Я. Бауэр, Ю. Фиала, Р. Гржихова. "Известия АН СССР", сер. геол., № 7 (1963). 1 И. Г. Минеева в И. Ф. Картенко, Зап. Всесоюзи. Минер. общ., ч. 96, вып. 3 (1967). 4 С. И. Лебефева, Определение микротвердости минералов, Изд. АН СССР, 1963. 1 N. W. Thibault. Атег. Міпет., у. 29, № 9—10 (1944).