11 1970 2

УДК 530

ТЕОРЕТИЧЕСКАЯ ФИЗИКА

Р. С. Оганесян

К теории политропической атмосферы в целом

(Представлено чл.-корр АН Армянской ССР Г С. Саакяном 23/III 1970)

Рассмотрим вопрос равновесня атмосферы с учетом политропического режима. Ставим цель, найти закон распределения плотности, вычислим эффективный размер и массу атмосферы, учитывая только силы гравитационного взаимодействия. Не затрагивая локальные задачи, целью которых является нахождение распределения полей температур, давлений, скоростей в сравнительно небольшой области пространства, существования атмосферы, в целом, необходимо связать со сходимостью следующего интеграла (1)

$$4 = \int_{R} p(r) r^{2} dr < \infty, \tag{1}$$

где R радиус центрального ядря, $\rho(r)$ плотность распределения атмосферы, удовлетворяющая следующим граничным условиям в интервале (R, ∞) :

$$r = R, \quad \rho = \rho_0$$

$$r \to \infty, \quad \rho \to 0$$
(2)

Кроме того $\rho(r)$, а также температура T(r) должны удовлетворять требованиям: $\rho(r) = 0$ и T(r) > 0 в интервале (R, ∞) .

Плотность распределения гравитирующих масс с учетом политропического режима в атмосфере определяется из следующей системы уравнений:

$$\frac{1}{\varphi} \frac{dp}{dr} = \frac{d}{dr} (V_0 + \varphi),$$

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d\varphi}{dr} \right) = -4\pi G \rho,$$

$$P = k \varphi^{\dagger},$$
(3)

гле V_0 — внешний потенциал гравитационного ядра, т — показатель политропы, который принимает обычно любое значение.

Таким образом, требуется решить граничную задачу и найти класс собственных функций и спектр собственных значений.

Представим

$$\rho(r) = A_n \theta^n; \quad \gamma = 1 + \frac{1}{n}. \tag{4}$$

где A_n , θ , n — подлежащие определению неизвестные величины. Из (3) с учетом (4) находим, что

$$K(n+1)\left\{4-GA^{---}\right\}^{-1}\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{d\theta}{dr}\right)=-\theta^n,\tag{5}$$

которое, с помощью обозначений

$$\alpha_n^2 = K(n+1) \left\{ 4 \pi G A_n^{\frac{n-1}{n}} \right\}^{-1}, r = \alpha_n \xi$$

приводится к известному уравнению Эмдена (2)

$$\frac{1}{z^2} \frac{d}{dz} \left(z^2 \frac{d\theta}{dz} \right) + \theta^n = 0. \tag{6}$$

Поскольку нас интересуют решения уравнения (6) в интервале (R, ∞) не содержащие особенности, можем представить

$$0 = C \, \xi^{-\beta} \,. \tag{7}$$

Подстановка в (6) дает

$$-\beta(1-\beta)\xi^{-\beta-2}=C^{n-1}$$

В виду произвольности 3 и С, можно положить

$$\beta + 2 = n \quad \beta (1 - \beta) = C^{n-1}$$

$$\beta = \frac{2}{n-1} \quad \beta = \frac{2(n-3)}{(n-1)}$$
(8)

Следовательно,

$$\rho = \left\{ \frac{2(n-3)}{(n-1)^2} \right\}^{\frac{1}{n-1}} = \frac{2}{n-1}$$

$$\rho = A_n \left\{ \frac{2(n-3)}{(n-1)^2} \right\}^{\frac{n}{n-1}} = \frac{2}{n-1}$$
(9)

При r=R, или $\xi=\xi_n=R|_{\mathbb{Z}_{n_0}}$ $\rho=\rho_0$ (плотность атмосферы на поверхности ядра). Следовательно,

$$A_n = p_0 \left\{ \frac{(n-1)^2}{2(n-3)} \right\}^{\frac{n}{n-1}} \xi_n^{\frac{2n}{n-1}}$$

Подставляя в (9), получим закон распределения плотности в виде

$$\rho = \rho_0 \left(\frac{\xi_n}{\xi}\right)^{\frac{2n}{n-1}} = \rho_0 \left(\frac{R}{r}\right)^{\frac{2n}{n-1}}.$$
 (10)

Возможные значения индекса политропической модели атмосферы определятся после подстановки (10) в (1).

$$4\pi\rho_0\int\limits_R^\infty \left(\frac{R}{r}\right)^{\frac{2n}{n-1}}r^2dr<\infty. \tag{11}$$

Для сходимости необходимо

$$\frac{3-n}{n-1} \to 0$$

откуда следует:

1)
$$3 > n$$
; $n < 1$, τ . e. $1 < n < 3$ (12)

2) 3 < n; n < 1 невозможно.

Таким образом, спектор собственных значений нашей задачи определяется условием (12), а класс собственных функций— (10).

После вычисления интеграла (11) получаем довольно простую формулу для массы политропической атмосферы

$$M_0 = 4 \pi \rho_0 R^3 \frac{n-1}{3-n}. \tag{13}$$

Вычисление массы атмосферы облегчается, если известна средняя плотность или масса M_c центрального ядра. При этом окончательно получим

$$M_{a} = \frac{3(n-1)}{3-n} \cdot \frac{\rho_{0}}{\rho_{c}} M_{c}. \tag{14}$$

Из полученных результатов вытекает невозможность существования изотермической $(n-\infty, P=k_{\rm P})$ атмосферы, поскольку интеграл (11) расходится. По этой же причине исключается возможность существования атмосферы из газа с $n=3, P=k_{\rm P}$. Наконец вычислим самосогласованный потенциал атмосферы с помощью (10) и (3). Для напряженности поля получаем

$$\frac{d}{dr} = \frac{M_0 G}{r} \left(\frac{R}{r}\right)^{\frac{3-n}{n-1}} + \frac{A_1}{r^2}$$

Пользуясь теоремой Гаусса (при r-R. $\frac{d\phi}{dr}=0$) находим

$$A_1 = GM_u$$

11

$$\varphi = GM_a \left\{ \frac{1}{r} - \frac{(n-1)}{2R} \left(\frac{R}{r} \right)^{\frac{2}{n-1}} \right\}.$$

А общий потенциал ядра и атмосферы представится в виде

$$V_0 + \tau = \frac{GM}{r} - \frac{GM_o(n-1)}{2R} \left(\frac{R}{r}\right)^{\frac{2}{1-1}}.$$

где $M = M_c + M_a$ суммарная масса центрального ядра и атмосферы. Для иллюстрации полученных результатов рассмотрим земную атмосферу.

1. Аднабатическая модель земной атмосферы является частным случаем рассматриваемой политропической модели, если заменить отношением теплоемкостей $c_p|_{\mathcal{C}_v}$. Поскольку наша атмосфера в основном состоит из двухатомного газа, то

$$\gamma = \frac{c_p}{c_p} = \frac{7}{5} = 1 + \frac{1}{n}$$

откуда получаем n=2,5. Имея ввиду также, что

$$\rho_0 = 1,29 \cdot 10^{-3} \ \text{2 cm}$$
 $\rho_c = 5.517 \ \text{2 cm}$

для массы земной атмосферы находим

$$M_a = 2,24 \cdot 10^{-3} M_c$$
 (M_c масса земли).

что примерно на три порядка больше. Плотность уменьшается очень медленно по закону $= (\frac{R}{r})^{3.33}$ и эффективная толщина выходит больше, чем наблюдаемая. Следовательно, аднабатическая модель

земной атмосферы далека от реальной картины.

2. Политропическая модель земной атмосферы оказывается более близкой к реальной картине. При этом, необходимо найти индекс политропы и. Для этой цели мы пользовались экспериментальными данными, относящимися к плотности атмосферы на различных высотах-В таблице приводятся значения и, вычисленные по формуле (10). причем отношение обычных плотностей заменено отношением плотнос-

тей чисел частиц ($\rho/\rho_0 = N/N_0$).

Из приведенной таблицы видно, что для земной атмосферы и очень мало отмечается от единицы, причем, чем ближе к единице, тем быстрее падает плотность с высотой и тем меньше эффективная толщина. Действительно, масса атмосферы, заключенная между R и R+H будет

$$M_a(H) = 4\pi\rho_0 \int_{R}^{R-H} \left(\frac{R}{r}\right)^{\frac{2n}{n-1}r^2} dr$$

или

$$M_a(H) = \frac{n-1}{3-n} 4\pi \rho_0 R^3 \left\{ 1 - \left(1 + \frac{H}{R} \right)^{-\frac{3-n}{n-1}} \right\}^{-1}$$
 (15)

Определим эффективную толщину атмосферы такой высоты H, при которой 9/10 всей массы атмосферы заключена между R и R+H. Комбинируя (15) и (13) получим уравнение для определения H при данном n:

$$\lg\left(1 + \frac{H}{R}\right) = \frac{n-1}{3-n}. (16)$$

Из таблицы видно, что и принимает различные значения для различных слоев атмосферы. Это свидетельствует о слоистой структуре атмосферы. Масса и эффективная толщина атмосферы в основном определяются свойствами нижнего слоя. В ближайшем к земле слое, в

Высота	Плотпость числа час- тип N	Инаскс по- антроны п	Высота	Плотность числа час- тиц N	Индекс по литропы л
()	2,7-1019	1,00239	120	2,5-1012	1,00230
10	7,2-1014	1,00216	130	4.1011	1,00224
20	1,5-1010	1,00212	150	1,5-1011	1,00244
30	3,2-1017	1,00216	200	2.1010	1,00291
40	8,1-1010	1,00223	300	3.100	1,00402
50	2,5,1016	1,00219	400	5-10ª	1,00490
60	5.1015	1,00230	500	5.107	1,00560
70	2 1015	1,00230	600	2.101	1,00640
80	2.1014	1,002110	700	6-104	1,00708
90	1014	1,00224	800	2 · 104	1,00789
100	2,5-1013	1,00224	900	1.10	1,00861
110	8,5-1012	1,00224	1000	4.109	1,00925

пределах $0 \le h$ 200 км индекс политропы изменяется очень незначительно, его среднее значение равно n=1,00227. Вычисляя массу и эффективную толщину атмосферы по этому среднему значению n=1,00227 с помощью формул (14) и (16), получим соответственно

$$\overline{M}_a = 0.8 \cdot 10^{-6} M_e$$
; $\overline{H} \approx 16.7 \text{ к.м.}$

Таким образом, получается, что масса атмосферы примерно в миллион раз меньше массы земли, а эффективная толщина составляет 16—17 км. Для верхних слоев индекс постепенно и медленно увеличивается, однако соответствующий им порядок массы атмосферы почти не меняется, а эффективная толщина увеличивается. Однако в использованной нами таблице (1) данные о распределении плотности атмосферы выше 20 км приведены через каждые 100 км. Это не дает возможности более точно определить среднее значение п для верхних слоев.

В заключение хочу выразить благодарность проф. А. А. Власову за постоянный интерес к решению этой задачи, а также проф. Г. С. Саакяну за обсуждения полученных результатов на теоретическом семинаре.

Ереванский госуларственный университет

Ռ. Ս. ՀՈՎՀԱՆՆԻՍՑԱՆ

Պոլիտոսիկ ատմոսֆեռայի տեսության մասին

Դիատեկվում է երկնային մարմինների չուրջը ատմոսֆերայի գոյության հարցը՝ պոլիտրոպիկ.

$$\rho = \rho_0 \left(\frac{R}{r}\right)^{\frac{2n}{n-1}}$$

տեսցով, որտեղ R -կենտրոնական մարմնի չառավիղն է, ρ_0 ատմոսֆերայի խաությունը r=R մակերևույթի վրա, իսկ n-ը պոլիտրոպի ինդեցսը, որը փոփոխվում է 1< n< 3 աիրույ- թում։ Ատմոսֆերայի զանգվածի համար ստացված է հետևյալ արտահայտությունը՝

$$M_n = \frac{3^n - 11}{3 - n} \cdot \frac{3^n - 11}{9^n} M_n$$

արտեղ կենտրոնական երկնային մարմնի միջին խտուβյունն է, -և նրա զանգվածը։ Մասնավարարար երկրի ատմոսֆերայի համար ստացվում են n-1.00227, $M_0=0.8\cdot 10^{-6}$, որտեղ ΛI_1 և երկրի զանգվածն էւ Այն (ֆեկտիվ բարձրությունը մինչև ուր կենտրոնացված է ատմոսֆերայի ողջ զանգվածի 9/10 մասը, կազմում է 16-17 կմւ

ЛИТЕРАТУРА-9 Г Ц Ч Ц Т П Р В Я Р Т

¹ А. А. Власов, Статические функции распределения, М., 1966. ² С. Чандрасекар, Введение в учение о строении звезд, М., 1950 ² Я. И. Альперт, Гаспространения раноли и попосфера, М., 1960.