МАТЕМАТИКА

УДК 5137(07)

М. А. Василян

Квадратичные гиперполосы ранга п-2 в проективном пространстве Р

(Представлено чл.-корр. АН Армянской ССР А. А. Талаляном 11/11 1970)

1. В работе (1) было построено инвариантное оснащение гиперполос H_{n-2} ранга n-2 в пространстве P_n . В настоящей работе рассматривается частный вид гиперполос H_{n-2} в пространстве P_n , именно квадратичные гиперполосы, построение инвариантного оснащения которых тесно связано с инвариантным оснащением гиперповерхностей конформного пространства C_{n-1} (2).

Если Q_{n-1} невырожденная гиперквадрика в проективном пространстве P_n и V_{n-2} — некоторая поверхность, лежащая на ней, то с этой поверхностью можно связать гиперполосу H_{n-2} , для которой поверхность V_{n-2} будет базисной. Плоский элемент (A, a) этой гиперполосы образован точкой A поверхности V_{n-2} и гиперплоскостью гиперповерхность V_{n-1}^{n-2} рянга n-2, касающуюся гиперквадрики Q_{n-1} вдоль поверхности V_{n-2} . Такую гиперполосу H_{n-2} назовем квадратичной.

Геометрия квадратичных гиперполос ранга n-2 в пространстве P_n связана с геометрией гиперповерхностей конформного пространства C_{n-1} , так как при перенесении Дарбу пространство C_{n-1} отображается на гиперквадрику Q_{n-1} проективного пространства P_n . Гиперповерхность V_{n-2} пространства C_{n-1} при этом отображении перейдет в поверхность $V_{n-2} \subset Q_{n-1}$ пространства P_n , с которой можно связать квадратичную гиперполосу H_{n-2} .

2. Пусть Q_{n-1} — невырожденная гиперкнадрика в пространстве P_n . Ее уравнение в произвольном точечном репере A_i ($k=0,\cdots,n$) имеет вид:

$$G(X, X) = g_{\alpha}X^{\alpha}X^{\alpha} = 0,$$

а в соответствующем тангенциальном репере з1-вид

$$G(\xi, \xi) = g^{-1} \xi_{\lambda} \epsilon_{\alpha} = 0$$
, the $g_{\alpha}, g^{-1} = \delta_{\lambda}^{\alpha}$.

Условие неподвижности этой гиперквадрики при произвольных преобразованиях репера A. имеет вид:

$$\nabla g_{\mu\nu} = dg_{\mu\nu} - g_{\mu\nu} \omega_{\mu}^{\nu} - g_{\nu\mu} \omega_{\mu} = 2 \eta g_{\nu\mu} . \tag{1}$$

Если точка A_0 репера лежит на гиперквадрике Q_{n-1} , а ее гиперплоскость \mathbf{z}^n касается гиперквадрики, то $g_{\mathbf{0}_0} = 0$, $g^{n_0} = 0$. Так как точки A_p ($p = 1, \cdots, n-1$) лежат в гиперплоскости \mathbf{z}^n , то они полярно сопряжены точке A_0 относительно гиперквадрики Q_{n-1} , поэтому $g_{\mathbf{u}_p} = 0$. Точно так же из того, что гиперплоскости \mathbf{z}^p , проходищие черет точку A_0 , полярно сопряжены гиперплоскости \mathbf{z}^p относително гиперквадрики Q_{n-1} , вытекает, что $g^{p_0} = 0$. Кроме того уравиение гиперквадрики Q_{n-1} , вытекает, что $g^{p_0} = 0$. Кроме того уравиение гиперквадрики Q_{n-1} можно пронормировать условием $g_{0n} = -1$.

Используя уравнение (1), можно найти соотношения, которые связывают коэффициенты уравнения гиперквадрики — с компонентами инфинитезимального перемещения присоединенного к ней семейства реперов. Из этих соотношений нам понадобится следующие:

$$\nabla g_{pq} = ug_{pq} - g_{pq} - g_{pq}$$

3. Рассмотрим квадратичную гиперполосу H_{n-2} на гиперквадрине 1. Специализируем репер. присоединенный к этой гиперквадрике так, чтобы его точки A_i ($i=1,\cdots,n-2$) лежали в касательной плоскости E к базисной поверхности гиперполосы H_{n-2} , а точка A_{n-1} принадлежала характеристике E_1 ее гиперповерхности Тогда получим:

$$\omega_0^{n-1} = 0, \quad \omega_{n-1}^n = 0.$$
 (3)

Учитывая эти соотношения, из второго уравнения системы (2) при p=n-1 получим: $g_{t,\,n-1}\,\omega^t=0$. Формы $\omega^t=\omega^t$ будут базисными формами для гиперполосы H_{n-2} , поэтому они линейно независимы. Следовательно

$$g_{t, n-1} = 0.$$
 (4)

В силу этого, из (2) находим, что

$$\omega_i^n = g_{ij} \omega^j. \tag{5}$$

Эти соотношения показывают, что основной тензор a_i , (1) квадратичной гиперполосы H_{n-2} совпадает с коэффициентами g_{ij} уравнения гиперквадрики Q_n Соотношения (4) означают, что характеристика и иперповерхности и касательная плоскость E_{n-2} поверхности полярно сопряжены относительно гиперквадрики Q_{n-1} .

нак det $\neq 0$, то из второго уравнения системы (2) слеи при p = n - 1 в силу (3) находим $e^{t_n n - 1} w^n = 0$ как ныше, вналогичное рассуждение приводит к соотношения $e^{t_n n} = 0$ 113 первого уравнения системы (2) при p = i, q = n - 1 получим:

$$g_{ij}(w_{n-1}^{i} \quad \chi_{n-1} \quad w^{i}) + g_{n-1} \quad i=0.$$
 (6)

Продолжение уравнений (3) вводит величины λ_{n-1} , которые в силу (6) снязаны соотношением:

$$g_{ik}\lambda_{n-1}^{jk} + g_{n-1,n-k} + g_{n-1,-1} - g_{ik} = 0.$$
 (7)

Свертывая (7) по индексам і, ј, находим соотношение

$$\lambda_{n-1} + g_{n-1, n} + \mu_{n-1} \lambda^{n-1} = 0, \tag{8}$$

которое связывает величины ℓ_{n-1} и λ^{n-1} , введенные в (1). Рассмотрим инвариантную точку $M_{n-1} = A_{n-1} - \lambda_{n-1} A_0$ и гиперплоскость $\mu^{-1} = 2^{n-1} - \lambda^{n-1} a^n$, определяемые этими объектями. Проверка показывает, что соотношение (8) является условием полярной сопряженности точки M_{n-1} и гиперплоскости μ^{n-1} относительно гиперквадрики

В силу (7), тензоры b_{ij} и c^{ij} , введенные в (1), связаны соотношениями:

$$g_{ik}e^{jk} + g_{n-1, n-1}b_{ik}g^{jk} = 0. (9)$$

Эти соотношения показывают, что тензоры и c^{ij} имеют одинаковый ранг. В частности, если один из них обращается в нуль, то и другой также обращается в нуль. Геометрически это означает, что, если поверхность V_{n-2} квадратичной гиперполосы H_{n-2} становится плоской. То ее гиперповерхность V_{n-2}^{n-3} будет гиперконусом и наоборот. В дальнейшем будем предполагать, что тензоры b_{ij} и c^{ij} невырожденны

В силу (9) тензоры g_{tj} , b_{tj} , c^{tj} можно привести одновременно к диагональному виду, а это означает, что сопряженной сети на поверхности V_{n-1} , соответствует фокальная сеть на гиперповерхности V_{n-1}^{a} .

4. Продолжение уравнений (8) приводит к соотношениям:

$$\lambda_i + g_{in} + g_{in} = 0. ag{10}$$

связывающим объекты A_i и , введенные в (1). Эти объекты определяют соответственно инвариантные плоскости $E_{n-1} = \{M_1, \cdots, M_{n-1}\}$ и $E_i = \{\mu^1 + \mu^{n-2}\}$, гле $M_i = A_i - \lambda_i A_0$, $\mu^i = a^i - \lambda^i a^n$. Из (10) следует, ито эти плоскости полярно сопряжены относительно гиперквадрики Q_i .

Далее, дифференцируя коваринитно соотношения (10), находим связь между величинами λ_n^{ij} и λ_{ij}^0 , нведенные в (1):

$$g_{in}b_{in} = -g_{in}a_{in} + g_{in}a_{in} + g_{in}a_{in} + g_{in}a_{in} = 0.$$
 (11)

Свертывая левую часть ураннення (11) с тензором g¹¹, получны соотношение

$$\lambda_{n} = \lambda^{0} + g_{n-1} + g_{n-1} - g_{nn} = 0, \tag{12}$$

которое связывает величины да и 10 (1). Эти величины определякт

инвариантную точку $M_n = A_n + \lambda^{n-1} A_{n-1} + \lambda^t A_t - \lambda_n A_0$ и гиперплоскость $\tilde{u}^0 = a^0 + \lambda^0 a^n$. В силу (8). (10) и (12), эти обраны оказываются полярно сопряженными относительно гиперквадрики

Тензоры lu и hil. введенные в (1), в силу (11), (12) и (9). свя-

заны соотношениями:

$$g_{ik}h^{jk}+g_{n-1,\,n-1}l_{ik}g^{jk}=0.$$

Обозначим через M_n точку пересечения гиперплоскости \mathfrak{p}^0 и прямой $[M_0M_n]$, а через \mathfrak{p}^0 —гиперплоскость, проходящую через точку M_n и принадлежащую пучку гиперплоскостей $[\mathfrak{p}^0\mathfrak{p}^n]$ (здесь $M_0=A_0$, $\mathfrak{p}^n=\mathfrak{p}$). Теперь рассмотрим точку $M=\overline{M}_n+\lambda M_0$ пересечения прямой $[M_0\overline{M}_n]$ с гиперквадрикой Q_{n-1} . Легко проверить, что точка M является четвертой гармонической точкой для точки M_0 относительно точек M_n . И перплоскость $\mathfrak{p}=\mathfrak{p}^0+\lambda\mathfrak{p}^n$ из пучка гиперплоскостей $[\mathfrak{p}^0\mathfrak{q}^n]$, является касательной к гиперквадрике Q_{n-1} . Она будет четвертой гармонической гиперплоскостью для гиперплоскост \mathfrak{p}^n относительно гиперплоскостей \mathfrak{p}^0 , \mathfrak{p}^0 . Более того, точка M и гиперплоскость \mathfrak{p} инцидентны и полярно сопряжены относительно гиперпвадрики Q_{n-1} . Следовательно можно положить $M=M_n$, $\mathfrak{p}=\mathfrak{p}^0$. С инвариантной точкой M_n и гиперплоскостью \mathfrak{p}^0 связываются тензору $H^0=h^0+h^0$. $L_{I_0}=l_{II}+\iota\mathfrak{o}^{II}$, причем H^0 $\mathfrak{o}_{I_0}=L_{I_0}\mathfrak{o}^{II}=h$. Эти тензоры связаны соотношениями:

$$g_{in}H^{jh}+g_{n-1,\,n-1}I_{ik}g^{jk}=0.$$

5. Подсчет показывает, что матрица коэффициентов уравнения гиперквадрики Q_{n-1} в инвариантном репере принимает вид:

$$G = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & G_{n-1, n-1} & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \qquad (i, j = 1, \dots, n-2).$$

rae $G_{ij} = g_{ij}$: $G_{n-1, n-1} = g_{n-1, n-1}$.

Теперь мы можем указать связь оснащения, а также геометрических образов, связанных с кнадратичной гиперполосой H_{n-2} в протранстве P_n , с оснащением и геометрическими образами гиперповерхности V_{n-2} конформного пространства C_{n-1} , рассмотренными в работе (2).

на матрицы (13) показывает, что построенный инвариантный репер является репером такого же типа, как репер, использованный пработе (1), при изучении конформной геометрии гиперповерхности При этом гармоническому полюсу M_{n-1} на характеристике гиперповерхности V_n соответствует центральная гиперсфера $C_{n-1} = A_{n-1}$

 $+\overline{a}A_{6}$ из пучка гиперсфер $\overline{A}_{n-1}+\lambda\overline{A}_{0}$, касательных к гиперповерхности V_{n-2} в точке \overline{A}_{n} . Так как гиперплоскость μ^{n-1} и точка M_{n-1} полярно сопряжены относительно гиперквадрики Q_{n-1} , то гармонической поляре μ^{n-1} из пучка гиперплоскостей $\lfloor a^{n-1}a^{n} \rfloor$ соответствует та же центральная гиперсфера C_{n-1} . Пивариантной плоскости E_{n-2} , натянутой на липейно независимые точки M_{n} , соответствует инвариантный пучок гиперсфер базисом которого являются линейно независимые гиперсферы $C_{l}=A_{l}-b_{l}A_{0}$. Но поскольку инвариантная плоскость E_{2} полярно сопряжена плоскости E_{n-3} относительно гиперквадрики Q_{n-1} , то плоскости E_{2} будет соответствовать тот же инвариантный пучок гиперсфер. Пивариантной точке M_{n} соответствует инвариантная точка

$$\overline{C}_n = \overline{A}_n - a\overline{A}_{n-1} - b^{\dagger}\overline{A}_{i} - \frac{1}{2}(g_{ij}b^{\dagger}b^{\dagger} - a^{\dagger})\overline{A}_{0}.$$

Но так как гиперплоскость полярно сопряжена точке M_n относительно гиперквадрики Q_{n-1} , то гиперплоскости будет соответствовать эта же инвариантная точка C_n .

Тензорам g_{IJ} , a_{IJ} , c_{IJ} , связанным с окрестностями первого, второго и четвертого порядка гиперповерхности \overline{V}_{n-2} пространства C_{n-1} , будут соответствовать тензоры g_{IJ} , b_{IJ} , L_{IJ} квадратичной гиперполосы H_{n-2} пространства P_n , связанные с окрестностями таких же порядков.

Таким образом, инвариантный репер гиперповерхности V_{n-1} конформного пространства C_{n-1} , построенный в работе (2), при перенесении Дарбу переходит в построенный нами инвариантный репер квадратичной гиперполосы H_{n-2} проективного пространства P_n

Считаю своим долгом поблагодарить М. А. Акивиса. под руководством которого выполнена настоящая работа.

Ереванский государственный университет

Մ. Ա. ՎԱՍԻԼՅԱՆ

ո-2 ուսնգի քառակուսային հիպեւշեւտեւը P, պրոեկտիվ տաւածությունում

Այսատանքում դիտարակում է n-2 տարա- քառականակին հայերերան P_n տարա- ծուքյունում։ Սա որում դատարան է n-2 ռանցի բնց նահուր տես և հայերական (1) ետա- գոտուքյան համար կառության ապարտար

-2 ցառակուսա իպերջերտերի համար \wedge_{n-1} են (8), (10), (12) առևտքի աևևտքի և աևևերը Q_{n-1} հե երանցով որոչևող երկրատափական կերպարենրի բևեռային առակուսային հիպերջերտերի արզվում որ fi_{n-1} ցառակուսային հիպերջերտերի կունը C_{n-1} (2) տարածուք հիպերմակերնույpննրի տեսուp

ЛИТЕРАТУРА — ЧРИЧИТОТР ВОТЪ

¹ М. А Василия, ДАН Арм. ССР, т. 50, № 2. ² М. А Акцаис Математический сбориик, т. 31 (73), 43—75 (1952).