2434444 UU2 ЧРУПРЕЗПРОСОРР ЦЧЦРОГРЦУР ДОЧПРУЗСОР ДОКЛАДЫ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

L		1970	1000	1

УДК 691 3.032.217.2

ПРИКЛАДНАЯ ОПТИКА

А. Е. Меламид, Ж. Х. Хачатрян

Новые эффективные фотокатоды для области спектра 900-150 А

(Представлено чл.-корр АН Армянской ССР Г А Гурзадяном 30/1Х 1969)

Для неследований в области внеатмосферной астрофизики определенный интерес представляют измерения абсолютных интенсивностей излучения в области спектра 900 – 1500 Å.

Среди детекторов излучения в вакуумной ультрафиолетовой области спектра особое место занимают так называемые приемники открытого типа, предназначенные для измерения излучения короче 1200Å, в которых фотокатод не отделен окном колбы (¹⁻⁵). К таким приемникам обычно предъявляются требования высокого квантового выхода фотоэмиссии в вакуумной ультрафиолетовой области спектра и «слепоты» к длиноволновой ультрафиолетовой и видимой части спектра. И кроме того, характеристики этих фотокатодов должны быть устойчивы во времени и в условиях воздействия атмосферного воздуха.

Этим гребованиям частично удовлетворяют чистые металлы (Pt, W, Ni, Ag, и др.) (⁶⁻¹¹), галоидные соединения щелочных и щелочноземельных металлов (¹²) и их фториды (¹³).

Известно (⁴⁻¹⁴), что ряд вторично-эмиссионных сплавов (CuBe, CuBeAl, и др.) обладает достаточно высоким фотоэмиссионным квантовым выходом в этой области спектра. За последние годы лоявился ряд новых, специальных, вторично-эмиссионных сплавов, типа AlMgSi, AlMgSr, и других, на основе Al, фотоэмиссионные свойства в ВУФ области которых не исследованы.

В настоящей работе определялись спектральные характеристики ряда вторично-эмиссионных сплавов с учетом использования их в качестве фотокатодов в умножителях открытого типа.

Измерения производились на вакуумном монохроматоре типа ВМР-2 нормального падения с решеткой имеющий 600 *штр/мм* и радиус кривизны—1 м. Схема откачки монохроматора была дополнена дифференциальной откачкой с целью достижения в приемной камере вакуума не хуже 10⁻⁵ мм рт. ст.

В качестве источника излучения использовалась водородная лампа открытого типа, работающая в проточном водороде. За выходной щелью

монохроматора была смонтирована специальная камера, в которой пемещался измеряемый фотоэлемент (или фотоэлектроиный умножитель).

Блок-схема установки показана на рис 1. Абсолютные значения интенсивностей излучения за выходной шелью измерялись заранее откалиброванным фотоэлементом, на торцевое стекло фотокатода которого был нанесен слой салишиловокислого натрия. Интенсивность источника

Рис. 1. Блок-схема установки.

1 — водородный источник 2 — монодроматор; 3 — решетка; 4 — щель; 5 — приемная камера, 6 — поворотный экраи из салицилововислого натрия, 7 — анод; — испытуемый образецкатол, 9 — контрольный ФЭУ, регистрирующий поток; 10 стабилизированный выпрямитель питании ФЭУ; 11 — усилитель постоянного тока; 12 — питании фотоэлемента; 13 — усилитель У 1-2

излучения измерялась при помощи калибровочного устройства монохроматора ВМР-2 и поддерживалась постоянным изменением тока источника излучения.

На рис. 2. показаны спектральные характеристики платины и вольфрама. Они хорошо совпадают с литературными данными (^{11, 14}).

Рис. 2. Спектральное распределение квантового выхода фотозмиссии из пластины (/) и вольфрама (2) для сплавов

Образцы фотокатодов изготовлялись из ленты (прокат сплава) толщиной 0,1 мм Перед помещением в приемную камеру они предварительно очищались ультразвуковой обработкой в четыреххлористом уг-

лероде. в затем промывались спиртом Измерениям подвергались также отоженные и окисленные образцы. Отжиг производился в высоком вакууме при температуре / = 540" - 600"С, в зависимости от типа имбранного матернала, в течение 20-30 минут. Для окисления образцы предварительно обезгаживались. а затем в систему вводился сухой кислород под давлением 0,4-0,5 мм рт. ст В этой втиосфере образцы прогревались при 1-430 440 С (для AlMg Sr 1-600°С в течение і часа) После этогопроизводилась откачка кислорода до высокого вакуума и прогрев в течение 30 минут при 1-330'-340°С. Все образцы измерялись при напряжении насыщения U = 220 вольт.

Рис. З Слектральное распределение квантового выхода фотозмиссии для спланов 1 AI Mg Sr (Mg -1° ., Sr - 1°/.), 2-cnen, chase M 1; 3-cnen. сплав № 2; / Al Mg Si (Mg - 1%, Si - 0,9%). 5 бериллиевая бронза (15); 6 — вольфрам (11). Масштаб правой орлинаты соответствует кривым / -- и обзасти спектра 1200 — 1500 Å

На рис. З приведены кривые спектральной зависимости квантового выхода от длины волны излучения для сплавов с очищенной поверхностью На том же рисунке для сравнения приведены спектральные кривые нанболее употребительных фотокатодов вольфрама и бериллиевои бронзы Из рис. З видно, что сплавы (1-4) имеют больший квантовый выход, чем вышеупомянутые польфрамовый и бериллиево броязовые фотокатоды в области спектра 900-1500 А. У всех образцов квантовый выход после отжига и окисления снижался Типичкая спектральная ха рактеристика для отоженного и окисленного сплава приведена на рис. 4. Квантовый выход окисленных сплавов в области более длинных воли

Таблица 1

	Ток фотокатода (в отн. ед.)				
Длина волны (А)	свежнй	через	через	через	
	катод	24 часа	240 часов	720 часоя	
449	63	62	61	62	
972	84	82	82	82	
1025	90	90	88	88	
1215	105	104	104	103	

Изменения тока фотокатода во времени (сплав Al Mg Sr)

(1000 А и выше) уменьшается быстрее, чем у неокисленных. Такие же эффекты наблюдались ранее для чистых металлов (⁶).

Как уже было сказано ранее, одним из важнейших требований для фотоэлектронных приборов открытого гипа является постоянство спек-

Рис. 4. Спектральное распределение квантового выхода фотоэмиссии для сплава AI Mg St.

I — после очистки; 2 — после отжига; 3 — после окисления

тральной чувствительности после неоднократного пребывания в атмосфере. В табл. I приведены измеяения тока фотокатода во времени для сплава AIMgSr. Как видно из табл. I спектральная чувствительность за 720 часов непрерывного пребывания на воздухе практически не изменялась.

Таким образом их можно рекомендовать для получения высокоэффективных фотокатодов, предназначенных для измерения абсолютных интенсивностей излучения в области спектра 900—1500 А.

Авторы благодарят чл.-корр. АН Армянской ССР Г. А. Гурзадяна за постоянное внимание к работе и Е. С. Шпичинецкого за предоставление сплавов.

Филнал Бюраканской астрофизической обсерватории по космическим исследованиям

u. e voulures, a. 6 60203esus

Նու էֆեկտիվ փոտոկատողնեւ 900-1500 A սպեկտոալ տիրույթի ճամար

Laquadanid phydud 1 900-1500 A myhturymi myraijfaid bar dhanwywhub Sanatumag-Lbyt ydwbawith bist uybtaynu pwitudaifiaibri

ЛИТЕРАТУРА— ԳՐԱԿԱՆՈՒԹՅՈՒՆ

¹ J. S. Allen, Rev. Scient. Instrum. 18, 739 (1947). ³ Dunkelman, JOSA. 45, 134 (1955). ³ L. Dunkelman, W B. Fowler, J. Hennes. Appl. Optils, 1, 695 (1962). ⁴ Ю. А. Шуба, А. М. Тютиков, О. М. Сороким, Искусственные спутники. Земли, вып. 10, 55 (1961). ³ L. Dunkelman, J. Quant, Spectr. Rad. Trans, 2, 533 (1962). ⁶ C. Kenty, Phys. Rev., 44, 896 (1933). ¹ R. F. Baker, JOSA, 28, 60 (1938). ⁹ H. E. Hinteregger, K. Watanabe, JOSA. 43, 604 (1953). ⁶ H. E. Hinteregger, Phys. Rev. 96, 538 (1954). ¹⁰ W. C. Walker, N. Wainfan, G. L. Weisster, J. Appl. Phys., 26, 1367 (1955). ¹¹ L. E. G. Wheaton, JOSA, 54, № 10, 1287 (1964). ¹³ S. Robin-Kandare, J. Robin, Y. Quema, C, r-Acad. Sc., 259, 549 (1964). ¹³ A. A. Гужов, H. H. Illabakos, Ю. А. Шуба. Жури прикл. спектроскопия, т. 6, вып. 3, 399 (1967). ¹¹ R. B. Cairns and J. A. R. Samson, JOSA, 56, № 11, 1568 (1966). J. A. R. Samson, Techniques of Vacuum Ultravtolet Spectroscopy, New-York, 1967.

