շրցկրերը որ արդարանին արտանի արտանի հրանի ծրութեջքին ЛОКЛАДЫ АКАДЕМИИ НАУК АРМЯНСКОЯ ССР 1969 XLIX

УДК 517.948

MATEMATHKA

С. Г. Симонян

Асимптотика ширины лакун в спектре оператора Штурма-Лиувилля с периодическим аналитическим потенциалом

(Представлено чл.-корр. АН Армянской ССР Р. А. Александряном 16/II 1969)

$$y'' + t^2 q(x) y = 0 (1)$$

 $y'' + l^2 q(x) y = 0$ (1) на всей оси $-\infty < x < +\infty$, где q(x)—непрерывная положительная периодическая функция с периодом l > 0.

Известно, что непрерывная часть спектра оператора L, порожденного уравнением (1) и периодическими краевыми условиями, состоит из зон устойчивости с присоединенными к ним граничными точками зон неустойчивости. Дискретная часть спектра этого оператора отсутствует.

Назовем лакуной непрерывной части спектра самосопряженного оператора L любой смежный интервал замкнутого множества $C\left(L\right)$. Обозначим через А ширину лакуны с центром в точке . В настоящей работе вычислена ширина лакуны Δ_{λ} при $\lambda \to + \infty$ для аналитических функций q(x).

В теореме 1 q(x) — целая функция: формулы для Δ_x в этом случае были получены ранее в физической работе А. М. Дыхне (1). В пункте 3° получены новые формулы. В теореме 2q(x) – мероморфная функция, полученные формулы являются новыми. Оказывается, что асимптотика ширины лакун определяется комплексными нулями и полюсами функции q(x). При доказательстве этих теорем использовались методы, изложенные М. А. Евграфовым и М. В. Федорюком (2.3).

Известно, что решение уравнения (1) в виде Флоке можно написать так:

$$y(x, \lambda) = \alpha \exp(\mu_1(\lambda)x) \gamma_1(x, \lambda) + \beta \exp(\mu_2(\lambda)x) \gamma_2(x, \lambda),$$
 (2)

где (x, h) (t = 1,2) — периодические функции, μ_1 и μ_2 — характеристические показатели. Обозначим $p_j = \exp(\mu_j(\lambda))$.

Пемма 1. Пусть $y_1(x, \lambda)$ и $y_2(x, \lambda) - dea$ комплексно сопряэксенные, линейно независимые решения уравнения (1). Тогда уравнение для характеристических показателей можно записать в Bude:

200

$$a = \begin{vmatrix} y_1(l, \lambda) & y_2(0, \lambda) \\ y_1(l, \lambda) & y_2(0, \lambda) \end{vmatrix} | W(y_1 y_2)]^{-1},$$

 $W'(y_1, y_2)$ — вронскиан решений y_1 и y_2 . Из (2) и решения уравнения (3):

$$p_{1,2} = \text{Re } a \pm 1 \text{ } (\text{Re } a)^2 - 1$$

получаем условне

$$|\operatorname{Re} a|$$
 (4)

которое определяет зоны неустойчивости или лакуны.

 2° . Случай, когда q(x)—целая функция. Нам необходимо перечислить некоторые определения и факты из топологии линий Стокса (23). Пусть q(z)—целая функция. Нули q(z) первого порядка называются простыми точками поворота. Линией Стокса (л. С.) для уравнения (1) называется линия, выходящая из точки поворота, вдоль

которой $\text{Re}\, z(z_0,z)=\text{Re}\int \sqrt{-q(t)}\,dt=0$. Из простой точки поворо-

та выходят 3 линии Стокса. Обозначим

$$\overline{b}(z) = \frac{p''(z)}{(p(z))^{3/2}} - \frac{5}{32} \cdot \frac{(p'(z))^2}{(p(z))^{5/2}},$$

где p(z) = -q(z) и положим

$$\sigma(z) = \inf_{z \in \mathbb{R}} |\delta(t)| |dt|, \quad \delta = \sup_{z \in \mathbb{R}} \sigma(z),$$

где $z^{-}(z)$ —кононические пути. Обозначим через Ф совокупность всех л. С., через R_z —сферу Римана. Через Q_0 обозначим множество всех целых функций q(z) удовлетворяющих следующим условиям:

- 1) $\Phi = \Phi$, $\Phi / l = \Phi / l$;
- 2) $\lim |\lim |z_0, z| = +\infty, z \in I$

для всякой бесконечной л. С. ℓ , и то же самое верно для — q(z).

- 3) все нули q(z) простые,
- 4) 4 < ∞.

В (*) доказано, что если выполняются условия 1), 2), то всякая связная компонента множества $R_z \setminus \Phi$ является или областью типа полоскости, или полосы, т. е. z(z) однолистна с D и z(D) есть полоса (полуплоскость) вида $a < \operatorname{Re} z < b$ ($\operatorname{Re} z > a$ или $\operatorname{Re} z < a$).

Лемма 2. Пусть $q(z) \in Q_0$ и q(x) > 0 при $-\infty < x < +\infty$. Тогова существует область D_0 типа полосы, содержащая веществен-

ную ось.

Доказательство проведено в (3). ∂D_0 составляется из двух связных компонент Γ и Γ (Im z > 0, $z \in \Gamma^*$), симметрично расположенных относительно вещественной оси, и Γ — периодические по Re z кривые с периодом I.

Теорема 1. Пусть $q(z) \in Q_0$ и q(x) > 0 — периодическая функция с периодом l > 0. Пусть расстояние по Rez между соседними точками поворота на l + pавно l. Тогда имеют место следующие асимптотические формулы:

1) если λ_n — центр n-ой лакуны, то

$$r_n = \frac{n\pi}{\varphi} + 0 (n^{-1}), (n \to \infty), \ \varphi = \int_0^t \sqrt{q(t)} dt$$
 (5)

2) Для ширины n-ой лакуны Δ_n с центром в точке λ_n справедлива формула:

$$\Delta_n = \frac{2}{\varphi} \exp\left(-\frac{n\pi\tau}{\varphi}\right) \left(1 + O(n^{-1})\right) \cdot (n \to \infty) \tag{6}$$

$$z=\operatorname{Re}\,\xi\,(z_0\overline{z}_0)=\operatorname{Re}\,\int\limits_{z_0}^{z_0}V\overline{-q\left(t\right)}\,dt>0,\,z_0\zeta\,\Gamma^+-$$
 точка поворота. Ме-

тот доказательства заключается в следующем; асимптотику решений $y_1(x, L)$, $y_2(x, L)$ удовлетворяющих условиям леммы 1, мы продолжим в комплексную плоскость, что и дает возможность получить (5) и (6).

- 2° . Доказанную теорему можно распространять на тот случай, когда на Γ^{+} на расстоянии / (по Re z) лежат две точки поворота. Получаются следующие формулы:
 - 1. Если λ_n центр n-ой лакуны, то

$$\lambda_n = \frac{n\pi}{\varphi + \psi} + O(n^{-1}), (n \to \infty), \tag{9}$$

где

$$\varphi = \int_{0}^{t} \sqrt{q(t)} dt, \quad \psi = \operatorname{Im} \xi(z_{0}, z_{1}), \quad \psi > 0.$$

2) Ширина n-ой лакуны Δ_n с центром ℓ_n

$$\Delta_{n} = \frac{2|\cos(\lambda_{n}\psi) + 0(n^{-1})|\exp(-\lambda_{n}\tau)}{|(\varphi + \psi)^{2}(+1) - \psi^{2}\sin^{2}(\lambda_{n}\psi)\exp(-2\lambda_{n}\tau)}$$
(10)

Замечание. При некоторых больших λ_n возможно, что в (10) множитель $\cos(\lambda_n\psi) + 0$ (n^{-1}) обращается в нуль. Это означает, что соответствующее собственное значение рассматриваемой задачи оказывается кратным, соответствующий отрезок зоны неустойчивости сводится к точке, т. е. соседние зоны устойчивости сольются в одну зону устойчивости.

3°. Пусть 1) q(z) — мероморфная, с периодом l>0 периодическая и, при z=x, - < x<+ ∞ положительная функция; 2) q(z) имеет на Γ^+ только простые нули: $z_n=z_0+nl$ (n=1,2,...) и простые полю. сы: $z_n=z_0+nl$ (1,2,...), причем линия Стокса, соединяющая z_n с лежит внутри $\overline{D_0}$

Теорема 2. Если q(z) — удовлетворяет условиям 1), 2), то

для краевой задачи

$$y'' + i^2 q(x) y = 0; y(0) - y(l) = 0, y'(0) - y'(l) = 0.$$
 (11)

справедливы следующие асимптотические формулы:

$$h_n = \frac{n\pi}{2} - O(n^{-1}), \quad (n \to \infty), \quad \gamma = \int_{-1}^{1} \sqrt{q(t)} \ dt,$$
 (12)

in-центр n-ой лакуны в спектре (11), и

$$\Delta_{n} = \frac{8|\sin(\lambda_{n}\lambda_{n}) + 0|(n^{-1})|\exp(-\lambda_{n}\lambda_{n})}{|\varphi^{2}|(1+\tau) - 64\cos^{2}(\lambda_{n}\lambda_{n})\exp(-2\lambda_{n}\tau)}$$
(13)

где Дл- ширина п-ой лакуны с центром в точке дл.

$$\psi = \text{Im } \epsilon(z_0, \epsilon_0) > 0, \quad \tau = \text{Re } \epsilon(z_0 z_0) > 0.$$

Доказательство проводится аналогично доказательству теоремы 1. Относительно формулы (13) вышеприведенное замечание сохраняет свою силу. Считаю своим приятным долгом выразить благодарность д. ф. м. н. Федорюку М. В. за постановку задачи и за постоянное внимание к работе.

Ереванский политехнический институт им. К. Маркса

Ս. Գ. ՍԻՄՈՆՅԱՆ

Պաբբերական գործակիցներով Շտուրմ—Լիուվիլի օպերատորի սպեկտրի լակունի երկաբության ասիմպտոտիկան

Thomphoned &

 $y + i^2 q(x) y = 0$

րավասարումը ամբողջ առանցրի վրա — « « — » — » և ընդերատ պարթերական ֆունկցիա է — « և ասիմպաստիկան, երբ և — » և քննարկված են հետևյալ դեպթերը 1) հանդիսանում է ամբողջ ֆունկցիա, 2) գ (x) մերոմորֆ ֆունկցիա էւ Վերջին դեպքի համար ստացված բանաձները ապացուցված են առաջին անդամ

ЛИТЕРАТУРА-ЧРИЧИКОВНЬ

1 А. М. Дыхне, ЖЭТФ, т. 40, в 5 етр. 1423—1426 (1961). 2 М А. Евграфов. М. В. Федорюк, УМН т. ХХІ, в 1 (127) стр. 3- 50 (1966). 3 М. В. Федорюк, Диф V. т. 1, № 5, 632—646 и № 11, 1525—1536, май, 1965 4 И. М. Глазман, Прямые методы качиственного спектрального анализа, Физматгиз, М., 1963