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and inadequate expertise. This article uses Artificial Intelligence (Al), specifically
Convolutional Neural Networks (CNNs) based on MobileNetV3-Small architecture,
to improve crop disease detection. The model was trained and validated using

fruit and berry colored leaf images from the PlantVillage dataset. The final model
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achieved an accuracy of 99.25% and a macro F1-score of 0.9891 across 13 plant
disease and health categories, which indicates the model’s strong potential for
accurate crop disease detection.

Introduction

Agriculture is one of the important sectors of Armenia
and is the branch that ensures the country’s food security
(Avetisyan, 2010). However, despite its important role,
the sector faces a number of significant problems. High
production prices, limited technologies, and a shortage
of agricultural specialists slow down the growth of the
sector (Alaverdyan, et al., 2015). Also, small land areas,
the average size of which is 1.4 hectares per household,
together with severe land degradation, hinder agricultural
production (International Trade Administration, 2018).

Farmers engaged in the cultivation of high-value crops
often face climate risks, as a result of which potential
outputs and incomes from them become unstable, hindering

© 2025 The Author(s).

the ability to invest in new technologies (Alaverdyan and
Nijhoft, 2024).

The development of digital technologies, especially the
use of Artificial Intelligence (Al), is of great importance
for solving the problems of modern agriculture. The
latter helps farmers make smarter decisions using robots,
sensors, machine learning (ML), and computer vision.
Such technologies make it possible to quickly detect and
control harmful organisms, as well as estimate crop yields,
monitor soil and water quality, and properly organize
irrigation (Meshram, et al., 2025).

However, agriculture in Armenia is only at an early stage of
implementing Al, and therefore, investments in localized
databases and infrastructure are needed to enable the
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detection of crop pests (IFOAM — Organics International
& ICARE Foundation, 2017). Thus, understanding the
global potential of Al and the specific context of Armenia
is critical for success.

The ML models have already been used to detect the
infected crops. In the “Automated Identification of
Northern Leaf Blight-Infected Maize Plants from Field
Imagery Using Deep Learning” paper by DeChant et al.
(2017), CNNs were used to generate heat maps, which
a final CNN then processed to classify the entire image
of a diseased leaf. The model, as a result, achieved a
high accuracy of 96.7% on the test set, as well as 96.8%
precision and 97.4% recall.

In another study, “Detection of Plant Diseases with
Artificial Intelligence Using the VGG-16 Model”
by Alatawi et al. (2022), CNN built on the VGG-16
architecture was developed based on leaf images taken
from the PlantVillage (Mohanty, et al., 2016) database.
The model was trained on 15,915 mixed images of healthy
and diseased leaves (19 types of diseases) of grapes,
apples, and corn. The VGG-16 model, using ReLU and
Softmax activation functions, achieved 95.2% accuracy
and had a test loss of 0.4418.

CNN models can be trained, tested, and validated using
datasets like PlantVillage to detect crop diseases as seen
in the examples above. Models with high F1-scores, high
accuracy, and low loss are considered effective and could
be used in local agriculture.

To the best of the Author’s knowledge, there have been
similar technological attempts to boost productivity
among Armenian farmers, yet no documented results were
identified in the sources consulted. Hence, this research
project has aimed to develop, train, test, and validate a
CNN model with high accuracy and reliability to fill this
gap as a foundational step, with additional work needed
to adapt and implement it to a local system. The research
question that guided this study is as follows: “How can Al-
based crop disease detection support Armenian farmers
in addressing the main productivity challenges in the
agricultural sector?”

Materials and methods

This study uses innovative structures and algorithmic
neural architecture to provide a balance between accuracy
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and latency. Howard et al. (2019) came up with the
architecture, MobileNetV3, which used inverted residuals
with SE blocks, optimized by NAS to increase accuracy
and efficiency. Additionally, it has Hard-Swish (HS) and
Hard-Mish (HM) activation functions, which balance
computing efficiency and non-linearity.

The MobileNetV3 has MobileNetV3-Small and
MobileNetV3-Large models, where the small one is
needed for resource-constrained situations. As the fruits
and berries are one of the widely cultivated crops in
Armenia (Hofmann, et al., 2022), the model will be trained,
tested, and validated on seven types of crops (Table 1)
from PlantVillage dataset (Mohanty, et al., 2016): apples,
cherries, peaches, blueberries, oranges, raspberries, and
strawberries, and therefore, the model introduced in the
paper will use the MobileNetV3-Small architecture.

The main parameters used for the model were as follows:
* Validation split: 0.2 (20% of data)

» Image size: 224x224 pixels

* Batch size: 64

* Class weights: balanced

» Base model: MobileNetV3-Small

* Dropout: 0.3 (30% dropout rate used after base model
output)

e Dense: 13 units, softmax activation
* Epochs: 100

* Optimizer: Adam — learning rate: 0.0001 (Beta_1: 0.5,
Beta 2:0.99)

* Loss function: Categorical Cross-entropy

Results and discussions

In this paper, the initial validation accuracy calculated
by Equation 1 and loss calculated by Equation 2 of the
pre-trained MobileNetV3-Small model were 90.16%
and 0.5171, respectively, which improved to achieve a
maximum validation accuracy of 99.25% on the 9lst
epoch and a minimal validation loss of 0.032 on the 95th
epoch (Figure 1).

(Eq. )

Number of Correct Predictions
Total Number of Predictions

Accuracy =
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Table 1. Crop and Leaf Types with Training and Testing Images and Counts*

Plant Name Leaf Label Examples Train Images Test Images

Scab (AS) 504 126
Black Rot (ABR) 497 124
Apple
Cedar Apple Rust (ACAR) 220 55
Healthy (AH) 1316 329
Powdery Mildew (CPM) 842 210
Cherry
Healthy (CH) 684 170
Bacterial Spot (PBS) 1838 459
Peach
Healthy (PH) 288 72
Blueberry Healthy (BH) 1202 300
Orange Huanglongbing (OH) 4406 1101
Raspberry Healthy (RH) 297 74
Leaf Scorch (SLS) 888 221
Strawberry
Healthy (St-H) 365 91

*Source: PlantVillage dataset.
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Figure 1. Training and validation loss and accuracy of a model in 100 epochs using Matplotlib (Hunter, 2007) from the Keras training
history (Chollet, 2015).

(Eq.2) Table 2. Precision, recall, and F1-scores for both individual
C

Loss = —Zyi log(7,).

i=1

and summary of classes*

S o
o= — =
where C is the number of classes; y; is the true label Class 5 E §
(1 if correct, 0 otherwise); )A/l. is the predicted probability E I~ E'
for class i.
Apple Scab 0.9449 0.9524 0.9486
As seen in Figure 1, there are no significant fluctuating Apple Black Rot 0.9920 1.0000 0.9960
patterns in both accuracy aIlld loss .graphs, whicb means Cedar Apple Rust 10000 1.0000 1.0000
that the model learned effectively without overfitting.
Apple Healthy 0.9759 0.9848 0.9803
To evaluate the performance of the MobileNetV3-Small- i e Hentis 1.0000  1.0000 1.0000

based model, Table 2 was created using three main

classification metrics: precision (Eq. 3), recall (Eq. 4), and Cherry Powdery Mildew 09952 0.9905 0.9928

F1-score (Eq. 5). Cherry Healthy 0.9940 0.9824 0.9882
(Eq. 3) Orange Huanglongbing 0.9991 0.9991 0.9991
Peach Bacterial Spot 0.9978 0.9847 0.9912

Precision = True Positives (TP) Peach Healthy 0.9595 0.9861 0.9726

True Positives (TP) + False Positives (FP) -

Raspberry Healthy 1.0000 1.0000 1.0000
Strawberry Leaf Scorch 1.0000 1.0000 1.0000

(Eq.4)

Summary Metrics
Recall = True Positives (TP)
A" True Positives (TP) + False Negatives (FN) Accuracy — — 0.9925
Macro Average 0.9875 0.9908 0.9891
(Eq. 5) Weighted Average 0.9926 09925 0.9925
- ' Precision (Eq. 3) - Recall (Eq. 4)
~“ Precision (Eq. 3) + Recall (Eq. 4) ° *Composed by the author.
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The table 2 provides an understanding of the model’s
ability to identify 13 different classes of plant health and
disease accurately.

The results of the analysis show that the model works
effectively on all 13 classes. For many classes, the F1-
score exceeds 0.98, and for some classes, such as Cedar
Apple Rust, Blueberry Healthy, Raspberry Healthy, and
Strawberry Leaf Scorch, it reaches the maximum value of
1.0000. The 0.9891 macro and 0.9925 weighted F1-scores,
as well as 99.25% accuracy, show that the model is not
only reliable but also performs well when the classes are
imbalanced.

The normalized confusion matrix shown in Figure 2 helps
to analyze the model’s classification behavior further
and understand which classes the model distinguished
correctly and which classes it mislabeled.

The Y-axis shows the real classes of the crop leaf images,
and the X-axis shows the classes predicted by the CNN
model. Each cell tells how often a real class was expected
as a particular class. The blue cells on the diagonal are
correct predictions — darker color means higher accuracy.
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The normalized values from 0 to 1 inside the cells show
the proportion of predictions for each class.

t-SNE visualization (Figure 3) applied to high-dimensional
feature vectors extracted by the final layers of the model
additionally helps to understand how the model internally
organizes the learned patterns. It is a nonlinear dimensional
reeducation technique that projects high-dimensional data
onto a 2D space while preserving local structures.

The visualization shows the clusters, which are either well-
separated and compact or scattered and partially mixed
with others. Blueberry Healthy, Cherry Powdery Mildew,
Cherry Healthy, Orange, Cedar Apple Rust, Raspberry
Healthy, Strawberry Leaf Scorch, and Strawberry Healthy
show isolated clusters. While Apple Black Rot, Peach
Bacterial Spot, Peach healthy, and the rest have slight
overlaps with each other and feature separation is more
challenging, the model showed promising results in these
classes.

Overall, this visualization confirms that the model has
developed to a stage where it can clearly distinguish
between plant leaf conditions.
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Figure 2. Confusion matrix showing proportions of predictions for each class (generated using scikit-learn (Pedregosa et al., 2011) for
confusion matrix computation and Matplotlib (Hunter, 2007) for visualization).
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Figure 3. t-SNE Visualization (van der Maaten &amp; Hinton, 2008) of Feature Embeddings from the model.

Conclusion

The model’s accuracy reached 99.25% with a macro-F1
score 0f 0.9891. It shows a strong potential, primarily when
the study was conducted using sparse and unbalanced
materials from the PlantVillage dataset.

Class imbalance in the dataset might’ve skewed the
performance; however, the model didn’t have any fluctuating
results and achieved high outcomes. Nevertheless, the study
has some limitations as it didn’t consider Armenia-specific
factors such as soil conditions or local pests, and did not
include field testing and Decision Support Systems (DSS),
which limits how useful it is in real farming.

Future research could support Armenian farmers by
creating a local dataset (fruits, berries, grains, vegetables),
validating the model in the fields, and integrating CNNs
with a Decision Support System (DSS) for actionable
recommendations. These steps would help reduce crop
losses, improve disease monitoring, and boost Al-based
disease detection, automation, and adoption in Armenia.
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