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Within the generalized bipolar coordinate system, a plane contact problem for a composite plane weakened by 

circular hole is considered. The contour of the circular hole is assumed to be covered by two intersecting lune-

shaped pads made of a different elastic material. Within the framework of plane elasticity theory, a closed solution 

to the problem is constructed in a bipolar coordinate system using the stress function method.  

The solution to the governing boundary value problem at first is reduced to a system of two singular integral 

equations, then formulated as a Riemann-Hilbert problem for certain vector function. The solution of last one is 

reduced to a system of Fredholm integral equations of the second kind, which admits a solution using the method 

of successive approximations. 
 

Կոնտակտային խնդիր շրջանային անցքով թուլացված և երկու լուսնաձև  

առաձգական բարձիկներով ուժեղացված բաղադրյալ հարթության համար 
 

Աղայան Կ.Լ, Հարությունյան Լ.Ա., Զաքարյան Վ.Գ. 

 

Հիմնաբառեր. Հարթ խնդիր, բաղադրյալ մարմին, երկբևեռ կոորդինատներ, լուսնաձև տիրույթ, 

սինգուլյար ինտեգրալներ, Ֆրեդհոլմի հավասարում: 

  

Ընդհանրացված երկբևեռ կոորդինատական համակարգում դիտարկվում է, շրջանային անցքով 

թուլացված, բաղադրյալ առաձգական հարթության հարթ կոնտակտային խնդիրը: Ենթադրվում է, որ 

շրջանային անցքը իր եզրագծով շրջափակված է, այլ առաձգական նյութից պատրաստված, երկու 

փոխհատվող լուսնաձև բարձիկներով: Առաձգականության տեսության հարթ խնդրի 

շրջանակներում, երկբևեռ կոորդինատային համակարգում, լարումների ֆունկցիայի մեթոդով, 

կառուցվում է խնդրի փակ լուծումը: 

Որոշիչ եզրային խնդրի լուծումը նախ բերվում է սինգուլյար ինտեգրալ հավասարումների 

համակարգի, որն այնուհետև ձևակերպվում է որպես Ռիման – Հիլբերտի եզրային խնդիր որոշակի 

վեկտոր ֆունկցիայի նկատմամբ: Վերջինիս լուծումը, բերվում է Ֆրեդհոլմի II սեռի ինտեգրալ 

հավասարումների համակարգի, որը թույլ է տալիս լուծում մոտավոր հաջորդականությունների 

մեթոդով: 

 
В обобщенной биполярной координатной системе рассматривается плоская контактная задача для 

ослабленной круговым отверстием составной плоскости. Предполагается, что контур кругового отверстия 

окружен двумя пересекающийся луночными подушками из другого упругого материала. В рамках плоской 
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теории упругости, в системе биполярной системе координат, методом функции напряжения, построено 

замкнутое решение задачи. 

Решение определяющей краевой задачи сперва сводится к системе из двух сингулярных интегральных 

уравнений, которое затем формулируется в виде краевой задачи Риммана – Гильберта для некоторой 

вектор функции. Решение последнего сводится к системе интегральных уравнений Фредгольма II рода, 

допускающее решение методом последовательных приближений. 

 

Введение.  

 

Исследованию закономерностей и особенностей напряженного состояния в 

составных упругих телах в виде упругой плоскости, содержащей концентраторы 

напряжения типа трещин, накладок и включений или остроугольные полости 

различных типов, посвящены многочисленные работы. В связи с этим, отметим 

книги [1-5], в которых выдвинуты различные подходы к решению вопросов, 

связанных с определением сингулярного поведения упругих напряжений около 

концевых точек концентраторов напряжений. В работах [6-12], конечно это далеко не 

полный список, поставлены и решены различные задачи, относящиеся  к вопросам 

изучения напряженно – деформированного состояния в составных упругих телах, с 

точным определением степеней сингулярности разрушающих напряжений в остро-

угольных точках контактных поверхностей. Наиболее близкими к рассматриваемой 

здесь задаче можно считать работы [2,6,11], в которых изучаются плоские задачи для 

внутренности круговых луночек. В [7,8,10] изучаются аналогичные внешние задачи 

теории упругости для неоднородных плоскостей с круговыми сегментными 

луночными подушками. 

   

 

1. Постановка задачи и вывод определяющих уравнений. 

 

В настоящей работе рассматривается плоская задача теории упругости для 

составной плоскости, ослабленной круговым отверстием и усиленной луночными 

подушками из другого материала. 

Принимаем, что в биполярной системе координат, первый материал занимает 

область 
0    и имеет упругие характеристики 1  и 1 , второй материал, с 

упругими характеристиками 2  и 2 , занимает область 
0

2


    , причем 

координата   внутри рассматриваемой составной области изменяется от −  до 

+  (фиг. 1). 

Между материалами, вдоль контактных линий 0 =  , осуществляется полный 

контакт. Внешние нагрузки, в виде нормальных и касательных напряжений, прило-

жены вдоль контура отверстия 
2


 =  . При этом предполагается, что напряжения 

на краях 
2


 = −  и 

2


 =  одинаковы. Так что, к геометрической симметрии задачи 

добавляется также симметрия по внешней нагрузке. Следовательно, ввиду 

симметрии напряженно-деформированного состояния относительно оси Oy , в 
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дальнейшем будем рассматривать только правую половину, которая в биполярной 

системе координат определяется неравенством  0  . 

   
Фиг. 1 

P a g e  | 5Внешние задачи для этой области удобно решать в несколько 

видоизменной системе биполярных координат. Связь прямоугольных координат с 

видоизменной системой биполярных координат дается формулами [2].  

sin , sh , ch cosgx gy ag=  =  = −   (1) 

где a – размерный параметр. 

Задача решается при помощи функции напряжений ( ) ( ), 1,2m m   = , 

каждая из которых удовлетворяют бигармоническому уравнению [2] 

( )( )
4 4 4 2 2

4 2 2 4 2 2
2 2 2 1 , 0mg

     
+ + − + +    = 

      
 (2) 

Напряжения и перемещения в видоизменённых биполярных координатах через 

функции напряжений ( ),m    задаются формулами [2]: 

( ) ( ) ( ) ( )( )
2

2
, ch cos sh sin ch ,

m

ma g

   
   = −  −  −  +     

   
 

( ) ( ) ( ) ( )( )
2

2
, ch cos sh sin cos ,

m

ma g

   
   = −  −  −  +     

   
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( ) ( ) ( ) ( )( )
2

, ch cos ,
m

ma g


   = − −    


 (3) 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

, ,
, 1 2

2

, ,
v , 1 2 1,2

2

m m

m m

m

m m

m m

m

g
u

g
m

      
  = −  − 

   

      
  = −  + = 

   

 

где m  и m  упругие характеристики ( m –модули сдвига, m –коэффици-

енты Пуассона), а связь между ( ),mg    и ( ),mg    дается формулой 

( )( )
( ) ( )( )

2 2 2

2 2

,
1 1 ,

m

m m

g
g

      
= − − −    

   
 (4) 

Бигармоническую функцию напряжений ( ) ( ), 1,2m m   =  ищем в виде 

интеграла Фурье: 

( ) ( ) ( )
1

, , 1,2
2

it

m mg f t e dt m



− 

−

   =  =

  (5) 

где ( ),mf t   берется в следующем виде 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 0 1 0

1 0 1 0

2 2 0 2 0

2 0 2 0

, ch cos ch cos

sh sin sh sin

, ch cos ch sin
2

sh sin sh cos
2

f t A t t B t t

C t t D t t

f t A t t B t t

C t t D t t

 =  − +   − +

+  − +   −

 
 = − − + − + 

 

 
+ − − + −  

 

 (6) 

Неизвестные функции интегрирования ( ) ( ) ( ), ,m m mA t B t C t  и ( )mD t  

( )1,2m =  определены при помощи следующих граничных условий: 

( ) ( ) ( )

( )( ) ( )
( )( )

( )

1

1

2

2 1 2

2

2

V ,0 ,0 0

,
, ;

g
g




=


=

 =   =

   
   =   =  



 (7) 
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( )( ) ( )( )
( )( ) ( )( )

0 0

0 0

1 2

1 2

, ,
, , ;

g g
g g

= =

= =

       
   =    =

 
 

( ) ( ) ( ) ( )1 0 2 0 1 0 2 0, , ; V , V ,U U  =     =    (8) 

где предполагается, что функции ( ) ( )1,2m m  =  удовлетворяют условиям 

разложимости в интеграл Фурье. 

Из граничных условий (7), для неизвестных функций интегрирования 

( ) ( ) ( ), ,m m mA t B t C t  и ( ) ( )1,2mD t m =  получаем следующие выражения через 

неизвестные функции ( ) ( )1,2mP t m =  

( ) ( )
( )

( )
( ) ( )

( ) ( )
( )

( )
( ) ( )

( ) ( )
( )

( )
( ) ( )

( ) ( )
( )

( )
( ) ( )

( ) ( )
( )

( )
( )

( ) ( )

0 0 0
1 1 2

1 1 3

0 0 0
1 1 2

1 1 3

0 0 0
1 1 2

1 1 3

0 0 0
1 1 2

1 1 3

0

0
2 1 1

4 4

0
2 1

2 sin sh 2 sin

2sh sh sin 2

2sin sin 2 sin

2 sh sh 2 sh

ch
cos2

cos

t t
A t P t P t

t t t

t t
B t P t P t

t t t

C t P t P t
t t t

t t t t
D t P t P t

t t t

t

A t P t t
t t

B t P t

  
= −

  

  
= +

  

  
= − −

  

  
= −

  

 
−   = −

 


= −

( )
( )

( )

( ) ( )
( )

( )

( ) ( )
( )

( )

( )
( )

( )

( ) ( )
( )

( )

0

1

4 4

2

0 0 0 0

2 1 2

2 2 4 2

2

0 0

0 0
1 2

2 2 4 2

ch
2

ch 1 sh cos sh
2 2 2

2

1 sh 2 sin 2
sin cos2

2

t

t
t t

t t t t t

C t P t P t
t t t t

t t
t t

t t
t t t t

 
− 

 + 
 

        
− + −  −      

      = + + −
    

  

  
+ −      − + +

    
  
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( ) ( )
( )

( ) ( )

( ) ( )
( )

( )

( )
( )

( )

( ) ( )
( )

( )

2

0 00 0
2 1 2

2 2 4 2

2

0 0 0 0

1 2

2 2 4 2

1 sh 2 2 cossin cos

2

ch 1 sh sin 2 sh
2 2 2

2

t tt t
D t P t P t

t t t t

t t t t t

t t
t t t t

 + −   
 = − + − +
     

        
− + −  −      

      +  + −
    

  

(9) 

( ) ( ) ( )
1

1,2
2

it

m mt e d m





−

 =    =

  

( ) ( )

( ) ( )

2 2 2

1 0 0 2 0 0

2 2 2 2

3 0 0 4 0 0

sh 2 sin 2 ; sh cos
2

sh sin ; sh cos
2

t t t t t t

t t t t

 
 =  +   = − −  

 

 
 =  +   = − +  

 

 

При удовлетворении условий (8) равенства перемещений, получаем следующую 

характеристическую систему определяющих сингулярных интегральных уравнений 

для определения неизвестных функций ( ) ( )1,2mP t m = , при помощи которой 

дается окончательное решение поставленной задачи. 

( ) ( ) ( ) ( ) ( )
( )

( )
( )

( ) ( ) ( ) ( ) ( )
( )

( )
( )

0

0

1 1 2 2 1 1

2 1 1 2 2 2

sh

sh

t

t

e
M t t M t t N t d

t

e
M t t M t t N t d

t

 − − 

−

 − 

−

 +  + =   
−  

−  + −  + = −   
−  





 (10) 

где 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( ) ( ) ( )( ) ( )( )

( )
( )

( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 21 1 22 2 23 1 24 2

2 21 1 22 2 23 1 24 2

1 11 22 12 21

22

2 11 22 12 21

22

1 3 1 4 2

2 3 1 4 2

1

2

1

2

t h a t P t a t P t a t t a t t

t h a t P t a t P t a t t a t t

M t a t a t h a t h a t t
ha t

M t a t a t h a t h a t
ha t

N t M t t M t t

N t M t t M t t

 = + + +  + 

 = − − −  − 

 = + + − − 

 = − + − 

=  + 

= −  + − 
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( ) ( )
( )

( )
( )( ) ( ) ( )

( )

( )
( )( )23 24

3 13 12 4 14 12

22 22

;
a t a t

M t a t h a t M t a t h a t
a t a t

= − + = − +  

( )
( ) ( )

2 2
2

11 2 0 0

1 2

1 1
sin 2 cos

t t
a t h t

t t

+ +
=  + 

 
 (11) 

( )
( )

( )
( )

2
12 0 0 0 0

1 2

1
ch 2 cos2 sh 2 sin 2

2 2

h
a t t t t

t t

  
=  +  + − −   
    

 

( )
( )

( )
( )

2

13 0 0

2

14 0 0 0 0

2

1
sh cos

2

1
ch cos sh sin

2 2

t
a t t

t

a t t t t
t

+  
= − −  

  

     
= −  − −     
     

 

( )
( )

( )
( )

( )
( ) ( )

( )
( )

( )
( )

( )

2
21 0 0 0 0

1 2

22
22 0 0

1 2

23 0 0 0 0

2

24 0 0

2

1 2
1 2

2 1

1
ch 2 cos2 sh 2 sin 2

2 2

sin 2 cos

1
ch cos sh sin

2 2

1
sh cos

2

11
, , ,

1 1

h
a t t t t

t t

h t
a t

t t

a t t t t
t

a t t
t

h h h

  
=  −  + − +   
    

=  + 
 

     
= − −  + −     

     

 
= −  
  

 − −
= =  =

+ − 

1
2 1

2

h
h= + −

 

 

2. Решение определяющей системы уравнений.  

Для решения сингулярных интегральных уравнений (10), представим их в 

виде 

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )

1

1 1 4 2 1

2

4 1 1 2 2

1

1

Y
M t Y t M t Y t K t d

t

Y
M t Y t M t Y t K t d

t



−



−

  
+ + = − 

   −

  
− + − + = 

   −





 (12) 

где 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0

0 0

0

2
1 1 2 2

1 1 2 2

2 2

4 2

;

;

;

t
t

t t

t t

Y t e t Y t e t

K t e N t K t e N t

M t e M t t e


− −  +

 − −  +

 

=  = 

= =

=  =

 (13) 

Интегральные уравнения (12) сведем к краевой задаче Римана-Гильберта 

[3,4,9,10]. 

Введем новую кусочно–голоморфную функцию 

( )
( ) ( )

( ) ( )
( )

1
1,2

2

m

m

Y
R z d m

i t



−

  
=  =

   −  (14) 

исчезающую на бесконечности. 

Если t –любая точка контура, то по формуле Сохоцкого-Племеля получаем: 

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )
( )

1
1,2

m m m

m

m m

R t R t Y t

Y
R t R t d m

i t

+ −



+ −

−

− =

  
+ =  =

   −
  (15) 

Подставляя эти выражения в систему сингулярных интегральных уравне-

ний (12), получим следующие краевые задачи Римана Гилберта 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 11 1 12 2 1

1 21 1 22 2 2

R t c t R t c t R t T t

R t c t R t c t R t T t

+ − −

+ − −

= + +

= + +
 (16) 

где 

( )
( )( )
( )

( )
( )( )
( )

( )
( )

( )
( )

( )

( )

( )
( )

( ) ( ) ( )( ) ( )

( )
( )

( ) ( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( ) ( )

1 1

11 22

3 3

4 4

12 21

3 3

1 4 2 1 1

3

2 4 1 1 2

3

3 1 1 4 4

2 2
1 ; 1

2 2
;

1

1

i M t i i M t i
c t c t

t t

iM t iM t
c t c t

t t

T t M t K t M t i K t
t

T t M t K t M t i K t
t

t M t i M t i M t M t

− + +
= + = −

 

−
= = −

 

 = − − − 

 = − − + 

 = + − − − −

 (17) 
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Обозначая матрицу коэффициентов через ( )G t , а векторы с составля-

ющими ( )mR t  и ( ) ( )1,2mT t m = – через ( )R t  и ( )T t , можно краевые 

задачи (16) записать в матричной форме 

( ) ( ) ( ) ( )R t G t R t T t+ −= +  (18) 

Решение уравнения (18), в общем случае, строится путем регуляризации, 

т.е. приведением к интегральному уравнению Фредгольма. 

Над обеими частями уравнения по определенным правилам производится 

операция, устраняющая сингулярные интегралы, понимаемые в смысле 

главного значения по Коши. 

( )
( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )
1 1

,
R R

R t d R t d
i t i t

+ − 

+ −

− −

      
=  = − 
   −    −   (19) 

Подставляя ( )R t+
 из уравнения (18) в первое уравнение (19), получаем 

( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

1
G t R t T t G R T d

i t



− −

−

 
 + =   +      −   (20) 

Умножая эти уравнения на ( )
1

G t
−

    и сложив со вторым уравнением 

(19), получаем 

( )
( )

( ) ( )
( ) ( )  ( )

( ) ( ) ( )

( ) ( )
( )

1

1

1

2

1

2

R t G t G E R d
i t

G t T
d T t

i t


−− −

−

−


−

 
 −  −   =    −

      = − 
   −  





 (21)  

где E -единичная матрица. 

Интеграл в левой части (21) собственный, так как подынтегральное 

выражение уже не имеет особенности в точках t = . Таким образом, мы 

пришли к системе интегральных уравнений Фредгольма второго рода. 

Разрешимость этого уравнения обеспечена, так как на контуре элементы 

матрицы ( )G t  и свободные члены, входящие в уравнение (18), удовлетво-

ряют условию Гельдера, а определитель матрицы отличен от нуля 

( )det 0
t i

G t
t i

+
= 

−
      на контуре (22) 

Индекс рассматриваемой краевой задачи равен -1, и однородная задача 

имеет лишь нулевое решение. При этом уравнение Фредгольма (21) всегда 

эквивалентно исходному уравнению [4,8,9,10]. 
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После несложных преобразований и упрощений, векторное уравнение 

(21) сводится к следующей системе интегральных уравнений Фредгольма 

второго рода относительно функции ( ) ( )1,2mP t m =  

( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

1 2

1 11 1 12 2 12

1 2

2 21 1 22 2 22

, ,
1

, ,
1

t t
P t H t P H t P d F t

t t

t t
P t H t P H t P d F t

t t



−



−

  
 =   +   +  

+   

  
 =   +   +  

+   





 (23) 

где 

( )
( )

( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( )

( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

0

11

2

21 12 12 11 22 12

0 2 2

22 11 12 21

sh
,

sh

1

ch
1

sh

t
H t

t

h t a a t a t a t a t a

t
h t a t a t a t a h

t

−  
 = 

−  

  −   − −  − +  +
 

−  
 + + −  + −   −
 −  

 

( )
( )

( )
( ) ( )( ) ( ) ( )( )

( )

( )
( ) ( ) ( )( ) ( ) ( ) ( )

0 2 2

12 11 11 21

0 2

21 21 11 21

sh
, 1

sh

ch
1

sh

t
H t a t h a t a h

t

t
h t a a t t a t a

t

−  
  = +  + +  − +
 −  

−  
 + +  − − −  
 −  

 

( )
( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( )
( ) ( )( ) ( ) ( )

( )
( )

( )
( ) ( ) ( ) ( ) ( )

( )

( )
( ) ( ) ( )( ) ( ) ( ) ( )

0

21

2 2

22 12 12 22 22

0

12 12 22

0 2

22 11 12 21 22

0 2

22 11 11 22

sh
,

sh

1

ch

sh

sh
, 1

sh

ch
1

sh

t
H t

t

h h t a a t a t a t a

t
h a t a t a

t

t
H t a t a t a t a

t

t
h t a a t t a t a

t

−  
 = 

−  

  + −   −  − +  +
 

−  
 + −  − −   −  

−  
  =  − +  +
 −  

−  
 + +  − − −  
 −  

(24) 
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( )
( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )(

( ) ( ) ( ) ( ) ( )( )

( )

( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) 
( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

0 2

1 22 23 1 24 2

12 13 1 14 2

0

12 23 1 24 2

13 1 24 2

2

11 23 1 24 2

21 13 1 14 2

sh
1

sh

ch

sh

1

t
F t h t t a t a a

t

a t a a

t
t a t a a

t

h a a d

h t ta t a t t a t t

ta t a t t a t t



−

 −  = − − +    +    − − 

−    +    +

−  
+ −     +    −−  

−    +     +

+ + −  +  +

+  + 



( )
( )

( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

( )

( )
( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

0 2

2 21 23 1 21 2

11 13 1 14 2

0 2

11 23 1 14 2

sh
1

sh

ch
1

sh

t
F t t a t a t a

t

a t a a

t
h t t a t a a d

t



−

 −   = − +   +    + −  

+    +    +

−    + + − −     +     − −   



 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

2

13 1 14 2

2

21 11 23 1 24 2

1

1 2

h t a t t a t t

t ta t a t th a t t a t t

− +  +  +

+ + − +  + 

( ) ( ) ( ) ( )

( ) ( )

2 1 2 1 2 1 2 1 2

2
21

1 2 1 2 2

sh 2 sin 2 sh 2

sh 1
4

t h t t h h t t

h
t t h t h

  =  +  +  +  −   − 

 
−   −  + − 

 

 (25) 

Учитывая найденные значения, для контактных напряжений из (3) будем иметь 

( ) ( )
( )

( )

( ) ( ) ( ) ( )

( )

0

0 2

2

0 0 0 1

0 2

ch cos
,

2

1
, ch cos sh cos

2

sin

m it

m

it

i
P t e dt

a

t it P t
a

P t e dt



− 



−





−

− 

− 
   =



    = −  −  −  +  − 


− 



  (26) 

В общем случае любое из трех напряжений (3) согласно (5), (9) и (23) 

выражается несобственным интегралом вида 
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( )
( )

( )

( )1

1

1
, ,

,

1

it

it

y

x y t a
x y dt

t y

a

− +



−

−

 
+    =

  
− 

 

  (27) 

который, после определения ( ), ,x y t , можно вычислить приближенно с помощью 

различных численных методов. 

Для исследования поведения напряжений в окрестности края поверхности 

контакта y a=   (т.е. в точках  =  ) интеграл (27) по вещественной оси 

добавляется интегралом по правой (при 0y   или 0  ) или по левой (при 0y   

или 0  ) полуокружности радиуса R →  с центром в начале координат [6-10]. 

При увеличении радиуса полуокружности последовательность R  может быть 

подобрана так, чтобы интеграл (27) по полуокружности стремился к нулю. 

Применяя теорему о вычетах, представим (27) в виде бесконечного ряда 

( )
( )

( )

( )

( )

1

1

1

1

1
2,31

1
, ,

, 2 выч , , ,

1

it

k kit
k

y

x y t a
x y i f x y t t

t y

a

− +

−
=

  
+       =  +     −    

  (28) 

Здесь ( ), , kf x y t – подынтегральная функция в (27), а k k kt i=  −  – корни 

уравнения ( ) 0t = , которые расположены в порядке возрастания положительных 

значений k .  

Трансцендентное уравнение ( ) 0t =  зависит от четырех параметров 1  и 2  и 

комбинаций упругих характеристик материалов 1h  и 2h . 

Очевидно, характер напряженного состояния около края ( )y a=  =  

определяется величиной мнимой части первого простого корня 1 1 1t i=  −  , 

уравнения (25). Если 1 1   около края имеем нулевое напряженное состояние, если 

1 1   имеет место явление концентрации напряжений. В случае 1 1 =  напряжения 

на краях поверхности контакта конечны и, в общем случае, отличны от нуля. 

Из уравнения ( ) 0t =  в зависимости от геометрических и физических 

параметров задачи можно найти области конечных и бесконечных напряжений на 

краю поверхности контакта и границу раздела между этими областями. 

Упомянутая граница определяется из зависимости 

( )2

0 1 0 2sin 2 cos 1 0h h  + − =  (29) 
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3. Частные случаи.  

 

а) 0 0sin 2 0 0 =  =  или 0
2


 =  (30) 

это значит что материал однородный. 

б) 
( ) ( )2 2

0 0

1 1

2 1 2 11
cos2 1, arccos 1

2

h h

h h

 − −
 = −  = − 

 
 (31) 

Уравнение (31) имеет решение, когда 

( )( )1

2

1 1
2

1

+ −


−
 (32) 

При 1 =  уравнение (31) имеет решение, когда 2 1   . 

При 1 2 =   уравнение (31) имеет решение, когда 2 1   . 

Следует отметить, что решением граничной задачи подверждается утверждение, 

сделанное в [6] на основе локального решения, о том, что в случае кусочно – 

однородного тела угол, разделяющий зоны концентрации напряжений от зоны 

малонапряженности может быть меньше развернутого угла. 

 

4. Заключение. 

 

С помощью видоизменной системы биполярных координат и аппарата интеграла 

Фурье, дано решение плоской задачи для составной плоскости, ослабленной 

круговым отверстием и усиленной двумя симметрично расположенными луночными 

подушками из другого материала. На границе отверстия заданы нормальные и 

касательные напряжения, а на линии сопряжения около края соприкасания подушек с 

плоскостью - условия полного контакта. При удовлетворении граничных и контакт-

ных условий получена определяющая система сингулярных интегральных 

уравнений. Решение этих уравнений, в конечном итоге, сводится к решению системы 

интегральных уравнений Фредгольма второго рода. Получено характеритическое 

уравнение, по корням которого определяется напряженное состояние около края 

соприкасания подушки с плоскостью. В зависимости от геометрических и 

физических параметров найдены области конечных и бесконечных напряжений и 

граница раздела этих областей.   

Отметим, что результаты рассмотренной здесь задачи могут быть использованы 

при оценке расчетов прочности тунельных соружений, встречающихся в различных 

областях строительства.   
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