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Abstract. Within the general Gel’fand–Yaglom method, starting from the extended 28-

component representation of the Lorentz group, we construct a new relativistic P -invariant 

generalized equation for a spin-1/2 particle possessing three characteristics in addition to the 

electric charge. The model is first developed for a free particle, where the corresponding system 

of spinor equations is derived and then transformed into spin-tensor form. In this form, we 

incorporate the interaction with external electromagnetic fields. By eliminating the accessory 

variables of the complete wave function, we obtain a minimal four-component Dirac-like 

equation that contains three new interaction terms, interpreted as arising from the additional 

electromagnetic characteristics of the particle. This approach is further extended to a Riemann 

space–time background within the conventional tetrad formalism, leading to additional 

geometrical interaction terms involving the Ricci scalar ( )R x , the Ricci tensor Rαβ , and the 

Riemann curvature tensor ( )R xαβρσ . 
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1. Introduction 

The general theory of relativistic wave equations has a long history [1]–[26]; for more 

details, see the recent book [24]. Within the general method of Gel’fand–Yaglom [9], we 

consider an extended 28 -component representation of the Lorentz group, comprising four 

bispinors and one third-rank spinor. This choice allows the construction of a relativistic system 

of equations for a spin-1/2 particle that possesses, in addition to electric charge, three further 

electromagnetic characteristics. The introduction of these characteristics extends the standard 

Dirac formalism by accommodating additional interaction structures, including higher-order 

derivatives, within a covariant framework. 

We first work in Minkowski space and derive a four-component Dirac-like equation 

containing the additional interaction terms via couplings to the electromagnetic field tensor. 

These terms are interpreted as corresponding to the three supplementary electromagnetic 

characteristics, and their structure goes beyond the minimal-coupling scheme by involving 

second-order derivatives. The resulting equation therefore generalizes the standard Dirac 

equation both in algebraic structure and in the types of physical interaction it describes. 

The formalism is then extended to a Riemannian space–time background using the 

tetrad approach, where additional couplings to the curvature appear through the Ricci scalar, 

Ricci tensor, and Riemann tensor. Finally, the non-relativistic limit is developed for both flat 

and curved backgrounds, yielding generalized Pauli-type equations in which the same 

combination of electromagnetic parameters governs both magnetic and curvature-induced 

interactions. This framework thus provides a unified description of anomalous electromagnetic 

properties and geometric effects for spin-1/2 particles. 

 

2. The new equation for a spin-1/2 particle 

We construct a generalized relativistic equation for a spin-1/2 particle based on an 

extended 28-component set of irreducible representations of the proper Lorentz group. 

 ( ) ( ) ] [ ( ) ( )4 0,1/ 2 1/ 2,0 1/ 2,1 1,1/ 2 ,T  = ⊕ ⊕ ⊕   (2.1) 

with the linking scheme  

 
( ) ( )

( ) ( )

4 0,1/ 2 4 1/ 2,0
| |
1/ 2,1 1,1/ 2  .

−

−
 (2.2) 
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First, we construct a matrix equation for a free particle (applying the ict -metric): 

 ( )Γ Ψ 0,  1, 2,3, 4 .Mµ µ µ∂ + = =  (2.3) 

 

In the modified Gel’fand–Yaglom basis, the matrix 4Γ  of the basic equation can be 

written in the form  

 
( )

( )

1/2
4

4 3/2
2 4

0
Γ ,

0

c

c I

γ

γ

⊗
=

⊗ ⊗
 (2.4) 

 

where the spin blocks ( )1/2c  and ( )3/2c  have the structure (corresponding to the linking scheme 

(2.2)) 

 

(1/2) (1/2) (1/2) (1/2) (1/2)
11 12 13 14 15
(1/2) (1/2) (1/2) (1/2) (1/2)
21 22 23 24 25

(1/2) (1/2) (1/2) (1/2) (1/2) (1/2)
31 32 33 34 35
(1/2) (1/2) (1/2) (1/2) (1/2)
41 42 43 44 45
(1/2) (1/2) (1/2) (1/2)
51 52 53 54

c c c c c

c c c c c
c c c c c c

c c c c c

c c c c c

=

(1/2)
55

,   (3/2) (3/2)
55'c c= , (2.5) 

 

and 2I  is the 2 2×  unit matrix. The involved irreducible representations are enumerated as 

follows:  

 ( ) ( ) ( ) ( )1,2,3,4 0,1/ 2 ,  1 , 2 ,3 , 4 1/ 2,0 ,  5 1,1/ 2 ,  5 1/ 2,1 .′ ′ ′ ′ ′⇒ ⇒ ⇒ ⇒  (2.6) 

 

Below we use shorter λ  and β  notations:  

 

1 11' 2 22 ' 3 33' 4 44 '

31 2 4
15' 25' 35' 45'

5 6 7 8
51' 52 ' 53' 54 '

,  ,   ,  ,

,  ,  ,  ,
2 2 2 2

,   ,  ,  .
2 2 2 2

c c c c

ic ic ic ic

ic ic ic ic

λ λ λ λ
ββ β β

β β β β

= = = =

= − = − = − = −

= = = =

 (2.7) 

 

The involved parameters obey a number of quadratic constraints, which follow from standard 

physical requirements on the equation: 
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1 2 3 4

1 2 1 3 1 4 2 3 2 4 3 4 1 5 2 6 3 7 4 8

1 2 3 1 2 4 1 3 4 2 3 4

2 3 4 1 5 1 3 4 2 6 1 2 4 3 7 1 2 3 4 8

1 2 3 1 2 4 1 3 4 2 3 4

1

1,
3 ( ) 0,
2

3 ( ) ( ) ( ) ( ) 0,
2

3 (1
2

[ ]

[

λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ β β β β β β β β

λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ β β λ λ λ β β λ λ λ β β λ λ λ β β

λ λ λ λ λ λ λ λ λ λ λ λ

λ

+ + + =

+ + + + + + + + + =

+ + +

+ + + + + + + + + + + =

+

+

+ + +

− 1 5 2 2 6 3 3 7 4 4 8

1 2 3 4 1 5 2 3 2 4 3 4 2 6 1 3 1 4 3 4

3 7 1 2 1 4 2 4 4 8 1 2 1 3 2 3

) (1 ) (1 ) (1 ) 0,

2 3 ( ) 3 ( )
3 ( ) 3 ( ) 0.

]β β λ β β λ β β λ β β

λ λ λ λ β β λ λ λ λ λ λ β β λ λ λ λ λ λ
β β λ λ λ λ λ λ β β λ λ λ λ λ λ

+ − + − + − =

+ + + + + + +

+ + + + + =

 (2.8) 

 

3. The presence of electromagnetic fields 

We omit the technical details and start with the resulting first-order equations in the 

presence of external electromagnetic fields ( D ieAµ µ µ= ∂ − ):  

 

(1)
1 1

(2)
2 2

(3)
3 3

(4)
4 4

(1) (2) (3) (4)
5 6 7 8

1ˆ ˆ( ) 2 { ( )} 0,
4
1ˆ ˆ( ) 2 { ( )} 0,
4
1ˆ ˆ( ) 2 { ( )} 0,
4
1ˆ ˆ( ) 2 { ( )} 0,
4

1 ˆ ( ) {
4

M D i D D

M D i D D

M D i D D

M D i D D

i D D M

µ µ µ µ

µ µ µ µ

µ µ µ µ

µ µ µ µ

λ λ λ

λ β γ

λ β γ

λ β γ

λ β γ

γ β β β β

+ Ψ − Ψ − Ψ =

+ Ψ − Ψ − Ψ =

+ Ψ − Ψ − Ψ =

+ Ψ − Ψ − Ψ =

 − − Ψ + Ψ + Ψ + Ψ + Ψ − 
 

1 ( )} 0
4 λ µ µγ γ Ψ =

 (3.1) 

where the four bispinors and one vector–bispinor are defined as  

 ( )
( )

( )
 

Ψ Ψ
Ψ ,  Ψ , 1,2,3,4.

ΨΨ

k a a
k

k
aa

kµ
µ

µ
= = =

 

 (3.2) 

The linear combination of four bispinors is denoted by Ψ : 

 ( ) ( ) ( ) ( )1 2 3 4
5 6 7 8Ψ Ψ Ψ Ψ Ψβ β β β= + + + . (3.3) 

From these equations we can derive (with D̂ Dµ µγ= ):  

 ( ) 1 21
1

2 1Ψ Ψ 0,ˆ ˆ
4

M D D DD
M
βλ  + + − = 
 

 (3.4) 

 ( ) 2 22
2

2 1Ψ Ψ 0,ˆ ˆ
4

M D D DD
M
βλ  + + − = 

 
 (3.5) 
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 ( ) 3 23
3

2 1Ψ Ψ 0,ˆ ˆ
4

M D D DD
M
β

λ  + + − = 
 

 (3.6) 

 ( ) 4 24
4

2 1Ψ Ψ 0.ˆ ˆ
4

M D D DD
M
βλ  + + − = 

 
 (3.7) 

 

Next, we act  

 on 3.4  by ( )( )( )5 2 3 4  ,ˆ ˆ ˆM D M D M Dβ λ λ λ+ + +  (3.8) 

 on 3.5  by ( )( )( )6 1 3 4  ,ˆ ˆ ˆM D M D M Dβ λ λ λ+ + +  (3.9) 

 on 3.6  by ( )( )( )7 1 2 4  ,ˆ ˆ ˆM D M D M Dβ λ λ λ+ + +  (3.10) 

 on 3.7  by ( )( )( )8 1 2 3  ,ˆ ˆ ˆM D M D M Dβ λ λ λ+ + +  (3.11) 

and sum the results. Using the identities  

 

   2 2
5 ,ˆ ,ˆ , DD D ieF J D D Dρλ ρλ µ µ µ ν ρ µν ρ µρ ν νρ µ µνρη ηγ γ γ δ γ δ γ δ γ γ γ= − = = − + +ò  (3.12) 

 

and taking into account the constraints on the λ  parameters, we obtain the basic equation:  

 2  ˆ ie ieM D F J DF J
M Mρ ρ µβ µβ µβ µβγ µ σ + − − +


 

 2 2 2 2 2
53

1 1 1  Ψ 0,
2 4

ie D F J e F F e F F e F F
M αβ αβ αβ βρ α ρ αβ αβ ρλαβ ρλ αβη γ γ γ  − − − − = 

 
ò  (3.13) 

 

where  

 ( )1 2 1 3 1 4 2 3 2 4 3 4
4 ,
3

µ λ λ λ λ λ λ λ λ λ λ λ λ= + + + + +  (3.14) 

 ( )1 2 3 1 2 4 1 3 4 2 3 4 1 2 3 4
4 4,    .
3 3

σ λ λ λ λ λ λ λ λ λ λ λ λ η λ λ λ λ= + + + =  (3.15) 

 

This equation describes a spin-1/ 2  particle which, in addition to its electric charge, 

possesses three additional electromagnetic characteristics µ , σ , and η . The structure of the 

resulting equation differs significantly from the known Dirac equation because it contains 

second-order derivatives in the additional interaction terms. 
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4. The presence of gravitational fields 

Assuming the use of the relativistic interval in real-valued form 
2 2 2 2 2 2ds c dt dx dy dz= − − − , one should use the following form of the basic equation in flat 

Minkowski space:  

 2
     ˆ e ei D M F j DF j

M M
ρ αβ αβ

ρ αβ αβ
µ σγ − + + +


 

   2 2 2 2 2
  53

1 1      Ψ 0.
2 4

ie D F j e F F e F F e F F
M

αβ α β ρ αβ ρλαβ
αβ αβ ρ αβ ρλ αβ

η γ γ γ  − − − − = 
 

ò  (4.1) 

We now extend this approach to a space–time models with Riemannian structure. To 

this end, we start with the system:  

 ( ) ( ) ( )1
1 1

1Ψ 2 Ψ ˆ
4

ˆ Ψ 0,M D i D Dµ µ
µ µλ β γ + − − = 

 
 (4.2) 

 ( ) ( ) ( )2
2 2

1Ψ 2 Ψ ˆ
4

ˆ Ψ 0,M D i D Dµ µ
µ µλ β γ + − − = 

 
 (4.3) 

 ( ) ( ) ( )3
3 3

1Ψ 2 Ψ ˆ
4

ˆ Ψ 0,M D i D Dµ µ
µ µλ β γ + − − = 

 
 (4.4) 

 ( ) ( ) ( )4
4 4

1Ψ 2 Ψ ˆ
4

ˆ Ψ 0,M D i D Dµ µ
µ µλ β γ + − − = 

 
 (4.5) 

   ( ) ( ) ( ) ( )( ) ( )1 2 3 4
5 6 7 8

1 1Ψ Ψ Ψ Ψ Ψ Ψ 0,
4

ˆ
4

i D D M µ
λ λ λ λ µγ β β β β γ γ   − − + + + + − =   

   
 (4.6) 

where ( )Ψ a , 1, 2,3, 4a =  are covariant bispinors, and Ψµ  is a covariant vector–bispinor. We 

apply the generalized derivative Dµ , which accounts for the presence of both electromagnetic 

fields and a curved space–time background. The symbol µ∇  denotes the covariant derivative, 

( )Γ xµ  is the bispinor connection, and ( )xµγ  are the local Dirac matrices:  

 ( ) ( ) ( )( )Γ Γ .ˆ, D ieA x x D D x ieAµ µ
µ µ µ µ µ µ µ µγ γ= ∇ − + = = ∇ − +  (4.7) 

We have  

 ( )( )
( ) ( ) ( ) ( )2 ,

ˆ
2

ˆ
2

[ , ]

DD D D D D D D

g x D D D D j x D D D x M x

α β β α α β β α
α β

α β α β α β

αβ α αβ αβ
α β α α β αβ

γ γ γ γ γ γ γ γγ γ

σ−

+ −
= = + =

= + = +
 (4.8 

where  
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 ( ) ( ) ( ) ( ) ( ) ( )2 ,  [ , ] ,  .
4

x x x x
D D D M x D D j x

α β β α
α αβ

α αβ α β
γ γ γ γ

−
−

= = =  (4.9) 

We then derive  

 ( )2
2 3 Ψ 0,ˆ ˆM D j M Dj M D j M j j M M

M M M
αβ αβ αβ ρσ αβ

αβ αβ αβ ρσ αβ
µ σ η + + + + + = 

 
 (4.10) 

where the involved additional terms are  

 ( ) 1Ψ Ψ Ψ,
2

M D D D D ieF j Rνρ
αβ α β β α αβ νραβ

 = − = + 
 

 (4.11) 

 ( )1Ψ Ψ,
4

j M ieF j R x
M M

αβ αβ
αβ αβ

µ µ  = − 
 

 (4.12) 

 ( ) ( )2 2
1 1  Ψ     Ψ,ˆ

4
Dj M D ieF j R x

M M
αβ ρ αβ

αβ ρ αβ
σ σ γ  = − 

 
 (4.13) 

 2
3 3

1      ( )
4

j j M M ieF j R
M M

ρσ αβ ρσ
ρσ αβ ρσ

η η = − +
 

 ( )  5
         2 2 2 .

2
ie F j R j R i j R R R j j jρα β νρ β α ρδ σαν β β ρσ αν τ

αβ ρ νρ δ νρσ νρσ ταβγ − − − + 
ò

òò  (4.14) 

Thus, the final form of the basic equation is:  

 ( ) ( )2
1 1
4 4

D M ieF j R D ieF j R
M M

σ αβ ρ αβ
σ αβ ρ αβ

µ σγ γ    + + − + − +    
   

 

 
2

3
1 1
4 4

D D ieF j R ieF j R
M

σ αβ ρσ
σ αβ ρσ

η     − + − +    
   

 

   ( ) ( ) ( )    5  
     2 2 2     Ψ 0.

2
ie F j R j R i j R R j j R jαρ β νρ β α ρδ ανσ β β ρσ να τ

αβ ρ νρ δ νσρ νρσ αβ τγ − − − =
ò

òò  (4.15) 

In order to have a standard presentation for Dirac equation, we should multiply the 

above equation by imaginary unit i , and make replacement M iM⇒ , so, we obtain  

 ( ) ( )2
1 1
4 4

ii D M ieF j R D ieF j R
M M

σ αβ ρ αβ
σ αβ ρ αβ

µ σγ γ −   − + − + − +    
   

 

 
2

3
1 1
4 4

D D ieF j R ieF j R
M

σ αβ ρσ
σ αβ ρσ

η −    − + − +    
   

 

 ( ) ( ) ( )    5  
     2 2 2     Ψ 0.

2
ie F j R j R i j R R j j R jαρ β νρ β α ρδ ανσ β β ρσ να τ

αβ ρ νρ δ νσρ νρσ αβ τγ − − − =
ò

òò  (4.16) 

Equation (4.16) differs from (4.15) only in the formal change of notations:  
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 ,  ,  ,  0i Mµ µ σ σ η η= ⇒ − ⇒ − > , (4.17) 

till now the symbols , ,µ σ η  are just formal notations; some of them may be even imaginary 

(see in the end of the next Section) 

As seen, a number of additional geometrical interaction terms arise through the Ricci 

scalar ( )R x , the Ricci tensor Rαβ , and the Riemann curvature tensor ( )R xαβρσ . The 

contributions from the Ricci tensor and Riemann tensor are zero only if the third parameter η  

vanishes. 

 

5. The non-relativistic equation in flat space 

Let us perform the ( )3 1+ -splitting of the above equation. Using the identities  

 
( )2 2

    

2 2 5
5

2 , 0,

1 1,       ,
2 4

n l l kn
l n kl n

kl mnkl
kl mn kl

F F E B F F j

F F B E F F E Bγ ε γ

= − ≡

= − =

 

     (5.1) 

and the notations ( ) ( ) ( ) ( )01 02 03 23 31 12, , , , ,i iK j j j J j j j= = , we can write the main equation 

in the form  

 
( ) ( ) ( )( )

( )( ) ( )( )

0 0
0 02

2 2 2 5
03

2   2  {   

    2     Ψ 0.

j j
j j

j j

ei ei D D M E K BJ D D E K BJ
M M

e i D D D E K BJ E B E B
M

µ σγ γ γ γ

η γ

+ − + + + + + −

− + + − + =

       

       
 (5.2) 

It is convenient to use the Pauli representation for the Dirac matrices:  

 0 5 0 1 2 3
00 0

,  ,  ,
0 0 0

jj

j

I I
i

I I

σ
γ γ γ γ γ γ γ

σ
−

= = = − =
− − −

 (5.3) 

 0 1 2 3
1 0 0 1 0 1 0

,  ,  ,  .
0 1 1 0 0 0 1

i
i

σ σ σ σ
−

= = = =
−

 (5.4) 

The generators ( )1
4

ab a b b aj γ γ γ γ= −  are given by  

 31 2
1 2 3

31 2

00 01 1 1,  ,  ,
00 02 2 2

K K K
σσ σ

σσ σ
= = =

−− −
 (5.5) 

 31 2
1 2 3

31 2

00 0
,  ,  .

00 02 2 2
i i iJ J J

σσ σ
σσ σ

= − = − = −  (5.6) 

To define large and small components, we apply the projection operators:  
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0 0

1 2

0 0 0
,  ,

0 0 02 2
II IP P P P

I
γ γ

+ −
+ −

= = = = = =  (5.7) 

we write  

 
( )
( )

( )
( )1 1 2 2

0
Ψ ,  Ψ Ψ ,  Ψ Ψ .

0
x x

P P
xx

ϕ ϕ
ϕϕ

+ +

−−

= = = = =  (5.8) 

In the non-relativistic limit, ( )xϕ+  is the large component and ( )xϕ−  the small one. 

Presenting the main equation in block form, we obtain the coupled equations:  

 ( ) ( )0
 

k k
eiiD M iD E iB
M
µϕ σ ϕ σ σ ϕ+ − +− + + − +

    

 ( ) ( )02
 

k k
e D E iB D E iB
M
σ σ σ ϕ σ σ σ ϕ+ −
 − + − − − 

        

 ( )( ) ( ) ( )2 2 2
03

    0,j j
e D D D E iB E B E B
M
η σ σ ϕ ϕ ϕ+ + −
 − − − + − − = 

        (5.9) 

 ( ) ( )0
 

k k
eiiD iD M E iB
M
µσ ϕ ϕ σ σ ϕ+ − −− + − − + − − +

    

 ( ) ( )02
 

k k
e D E iB D E iB
M
σ σ σ σ ϕ σ σ ϕ+ −
 − − − − − − 

        

 ( )( ) ( ) ( )2 2 2
03

    0.j j
e D D D E iB E B E B
M
η σ σ ϕ ϕ ϕ− − +
 − − − + − − = 

        (5.10) 

We now separate the rest energy by the substitutions:  

 ( ) ( ) ( )2 2 2
0 0 0 0 0 0 0    ,      ,      2 .D D iM iD iD M D D iMD M⇒ − ⇒ + ⇒ − −  (5.11) 

We then obtain  

 ( )0 2
1 1  

k k
eii D i D E iB

M M M
µϕ σ ϕ σ σ ϕ+ − ++ + − +

    

 ( ) ( )02
  1 1

k k
e D i E iB D E iB
M M M
σ σ σ ϕ σ σ σ ϕ+ −

  − − + − − −    

        

 ( )2
0 02 2 2

  1 1 12 1 j j
e D i D D D E iB
M M M M
η σ σ ϕ+

 − − − − +  

    

 ( ) ( )2 2
2 2

1 1   0,E B E B
M M

ϕ ϕ+ −
+ − − =

   
 (5.12) 

 ( )0 2
1 1  2k k

eii D i D E iB
M M M

µσ ϕ ϕ σ σ ϕ+ − −
 − + − − + − − + 
 

    
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 ( ) ( )02
  1 1

k k
e D E iB D i E iB
M M M
σ σ σ σ ϕ σ σ ϕ+ −

  − − − − − − −    

        

 ( )2
0 02 2 2

  1 1 12 1 j j
e D i D D D E iB
M M M M
η σ σ ϕ−

 − − − − − +  

    

 ( ) ( )2 2
2

1   0.E B E B
M

ϕ ϕ− +
− − =

   
 (5.13) 

It is known (for instance, see [3, 4]) that we should assume the following orders of 

smallness for the involved quantities (magnetic components jB  arise from commutators [ ]klD , 

electric components kE  from commutators [ ]0kD , whence follow their smallness orders):  

 2 2 3
0 2 2

1 11,  ,  ,  ,  ,  .j j
j

B E
x D x D x x x

M M M M
ϕ ϕ+ −∼ ∼ ∼ ∼ ∼ ∼  (5.14) 

In both equations, we will preserve only the terms of order x  and 2x . In this way we 

obtain:  

    ( ) ( ) ( )2
0 2 2 2

1 1        0; : k k
e e ex i D i D B B i B

M M M M M
µ σ ηϕ σ ϕ σ ϕ σ ϕ σ ϕ+ − + + ++ + − − =

      (5.15) 

 1:   0.
2 k kx i D

M
ϕ σ ϕ− += − =  (5.16) 

Eliminating the small component ϕ− , we derive (changing the notations ,iσ σ η η⇒ ⇒ − ): 

 ( )( ) ( )( )0
1 0.

2 k k n n
eiD D D i B

M M
ϕ σ σ ϕ µ σ η σ ϕ+ + ++ + + − − =

   (5.17) 

Keeping in mind the multiplication rule for Pauli matrices, we arrive at the equation (let 

Ψψ += , by physical reason we should assume the replacements: , , iµ µ σ σ η η⇒ = − ⇒ ): 

 ( ) ( )2
0

1 0.
2 2

e eiD red D B B
M M M

ψ ψ σ ψ µ σ η σψ+ + + + + =
    (5.18) 

Thus, in the non-relativistic limit, the generalized equation takes the form of the 

ordinary Pauli equation for a spin-1/2 particle with anomalous magnetic moment due to 

additional ( )µ σ η+ + -term. 

 

6. The non-relativistic approximation in presence of curved space background 

The detailed structure of the basic equation within the tetrad formalism reads as  
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 ( ) ( ) [ ]
[ ] 1( Γ

4
klc

c kli e ieA M ieF j R
M

σ
σ σ σ

µγ  ∂ + + − + − +  
 

 

 ( )( ) [ ]
[ ]

2
1  Γ  
4

klc
cc kl

i e ieF j R
M

σ
σ

σ γ−  ∂ + − + 
 

 

 [ ]
[ ]

[ ]
[ ] 2

3
1 1( )
4 4

kl kl
kl klD D ieF j R ieF j R

M
σ

σ
η −  − + − +   

 

 [ ]
[ ] [ ]( ) [ ] ( ) [ ] ( )( )        5  

       2
kc lc nc cdl k l k l k kns l l

c c nc cn d nsc snckl
ie F j R j R j R R i j R Rγ− − − − − −ò  

 [ ]( ) [ ] [ ]( ) }    Ψ 0,cs na klb
ncs abklR j j R j  =  (6.1) 

where ( ) [ ]
[ ]

( )
1 ,  
2

mn
c cc cmn cD e ieA j eσ σ

σ γ= ∂ + +  is a tetred and the symbols [ ]mn cγ  stand for Ricci 

rotation coefficients. The Latin letters designate the tetrad components. Equation (6.1) contains 

the scalar and tensor Ricci quantities. 

In order to develop the non-relativistic approximation (this is possible only for the non-

relativistic metric, 2 2
0

l l
kldS dx g dx dx= + , we need to fix the smallness orders of the involved 

geometrical quantities:  

 ( ) ( ) ( ), ,         ,f f f f
abcd abc d abd c abf cd abf dc afc bd afd bcR γ γ γ γ γ γ γ γ γ γ= − + − + −  (6.2) 

 ( ) ( ) ( )    ,   ,                 .a c c c f c f c f c f
mn mcn mc n mn c bf cd bf dc fc bd fd bcR R γ γ γ γ γ γ γ γ γ γ= = − + − + −  (6.3) 

In the non-relativistic equations, only the components of the Ricci tensor with spatial indices 

are present, so we get the simpler formula  

 ( ) ( ) ( )  ,   ,                 .i i i f i f i f i f
bd bi d bd i bf id bf di fi bd fd biR γ γ γ γ γ γ γ γ γ γ= − + − + −  (6.4) 

In the Ricci rotation coefficients, only the following appear: [ ]0ijγ  and [ ]ij kγ . Therefore, 

expressions for the generalized derivatives are simplified (note that { }, , , 1, 2,3n m k l∈ ):  

 [ ]
[ ]

( ) ( ) [ ]
[ ]

0 0 0 0
1 1,  .
2 2

kl kln
m n nmkl kl mD ieA j D e ieA jγ γ= ∂ + + = ∂ + +  (6.5) 

So, in the non-relativistic metric, we have:  

 00 01 02 020,  0,  0,  0,R R R R= = = =  (6.6) 
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11 1 ,1 11, 1 1 1 1 11 1 1

22 2 ,2 22, 2 2 2 2 22 2 2

33 3 ,3 33, 3 3 3 3 33 3 3

23 2 ,3 23,

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ),

( )

i i i k i k i k i k
i i k i k i ki k i

i i i k i k i k i k
i i k i k i ki k i

i i i k i k i k i k
i i k i k i ki k i

i i
i i

R

R

R

R

γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ

γ γ

= − + − + −

= − + − + −

= − + − + −

= − + 2 3 2 3 23 3 2

31 3 ,1 31, 3 1 3 1 31 1 3

12 1 ,2 12, 1 2 1 2 12 2 1

( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ).

i k i k i k i k
k i k i ki k i

i i i k i k i k i k
i i k i k i ki k i

i i i k i k i k i k
i i k i k i ki k i

R

R

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ

− + −

= − + − + −

= − + − + −

 (6.7) 

Similarly, for non-vanishing components of the curvature tensor we have (indices belong to 

{ }1,2,3 ):  

 ( ) ( ) ( ), ,         .j j j j
klmn klm n kln m klj mn klj nm kjm ln kjn lmR γ γ γ γ γ γ γ γ γ γ= − + − + −  (6.8) 

The smallness orders of the involved quantities are:  

 

2 2
2 2 4 3 60

2 4 2 4

2 2 2 2 40
2 2 2 2 2

,  ,  ,   ,   ,  ,

,  ,  ,   ,  .

n kln n n n n

kl kl klmn klmn klmn

D D B B E Ex x x x x x
M M M M M M M

R R R RRx x x x x
M M M M M M

γ

γ

∼ ∼ ∼ ∼ ∼ ∼ ∼

∼ ∼ ∼ ∼ × ∼

 (6.9) 

Further, making the needed calculations, we arrive at a generalized Pauli-like equation  

 ( ) ( ) ( ) ( ) ( )( )0 0 0
1 1Ψ (
2 2

n
n n m n nmi eA x G x e x ieA x

M
σ σ ∂ − + = − ∂ + − 

 
 

 ( ) ( )2 1 1) Ψ Ψ
2 4m n mn n n
i G x eB R

M
σ σ µ σ η σ + + + − 

 
.  (6.10) 

where we apply shortening notations for Ricci rotation coefficients: 

 [ ] [ ] [ ]( ) ( ) [ ] [ ] [ ]( ) ( )001 0 02 0 03 0 23 02 03, , ,  , , .j nmm m mG x G xγ γ γ γ γ γ= =  

Thus, in the presence of a curved space–time background, the Pauli-like equation takes the 

form of the ordinary Pauli equation for a spin-1/2 particle with anomalous magnetic moment 

( )µ σ η+ + , and the same coefficient appears in the geometrical term proportional to the Ricci 

scalar R . 

 

7. Conclusions 
Starting from the extended 28-component representation of the Lorentz group for a 

spin-1/2 particle, we have constructed a new relativistic equation that incorporates, in addition 

to the electric charge, three further electromagnetic characteristics. The derivation leads to a 

generalized 4-component Dirac-like equation in which three new interaction terms appear 
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explicitly. Each of these additional terms can be naturally interpreted as corresponding to one 

of the new electromagnetic characteristics of the spin-1/2 particle, thereby extending the range 

of possible interactions beyond those described by the standard Dirac formalism. 

The approach has been further generalized to the case of a Riemannian space–time 

background, where the formulation is carried out within the tetrad formalism. In this 

generalized setting, the presence of curvature introduces a number of additional geometrical 

interaction terms into the basic equation. These terms involve contributions from the Ricci 

scalar ( )R x , the Ricci tensor ( )R xαβ , and the Riemann curvature tensor ( )R xαβρσ . The 

resulting framework thus provides a unified description of spin-1/2 particles with anomalous 

electromagnetic properties, applicable in both flat and curved space–time, and explicitly shows 

how electromagnetic and geometrical interactions can be incorporated simultaneously into the 

relativistic dynamics of the particle. 
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ԱՄՓՈՓԱԳԻՐ 
Երեք լրացուցիչ բնութագրերով 1/2 սպին ունեցող մասնիկի համար նոր 
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Գելֆանդ–Յագլոմի ընդհանուր մեթոդի շրջանակներում, ելնելով Լորենցի խմբի 
ընդլայնված՝ 28 բաղադրիչ ունեցող ներկայացումից, մենք կառուցում ենք նոր 
ռելատիվիստական 𝑃𝑃-ինվարիանտ ընդհանրացված հավասարում 1/2 սպին 
ունեցող մասնիկի համար, որը էլեկտրական լիցքից բացի, օժտված է ևս երեք 
բնութագրերով։ Մոդելը նախ կառուցվում է ազատ մասնիկի համար, որի դեպքում 
ստացվում է համապատասխան սպինորային հավասարումների համակարգ, որն 
այնուհետև վերափոխվում է սպին–թենզորային ձևի։ Ապա այս ներկայացման մեջ 
ներառվում է արտաքին էլեկտրամագնիսական դաշտերի հետ փոխազդեցությունը։ 
Լրիվ ալիքային ֆունկցիայի լրացուցիչ փոփոխականների արտաքսման 
արդյունքում ստացվում է նվազագույն՝ չորս բաղադրիչ ունեցող Դիրակի տիպի 
հավասարում, որը պարունակում է փոխազդեցության երեք նոր անդամ՝ 
մեկնաբանվող որպես մասնիկի լրացուցիչ էլեկտրամագնիսական բնութագրերից 
ծագող։ Այս մոտեցումը հետագայում ընդլայնվում է Ռիմանի 
տարածաժամանակային ֆոնի վրա՝ ավանդական տետրադային ֆորմալիզմի 
շրջանակներում, ինչի արդյունքում առաջանում են երկրաչափական 
փոխազդեցության լրացուցիչ անդամներ՝ ներառյալ Ռիչիի ( )R x  սկալարը, Ռիչիի 
Rαβ թենզորը և Ռիմանի ( )R xαβρσ  կորության թենզորը։ 
Բանալի բառեր՝ 1/2 սպին ունեցող մասնիկ, ռելատիվիստական համաչափություն, 
ընդհանրացված հավասարում, լրացուցիչ էլեկտրամագնիսական բնութագրեր, 
արտաքին էլեկտրամագնիսական և գրավիտացիոն դաշտեր 
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