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Quantum interference of a de Broglie wave of a Dirac
particle beyond the "hypothesis of locality °.
Part II. Hermicity and non-relativistic limit
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Byurakan Astrophysical Observatory, Byurakan, Aragatsotn Province, Armenia

Abstract

This is the second of three articles that explore the possibility of quantum mechanical inertial properties
of the Dirac particle beyond the, so-called, "hypothesis of locality *, of standard approach. This is done
within the framework of the Master Space-Teleparallel Supergravity (M.S,-TSG) Ter-Kazarian (2025a)
theory, which we recently proposed to account for inertial effects Ter-Kazarian (2026). Our strategy
in Ter-Kazarian (2025b) (first article of three) is to compute the object of anholonomicity and connection
defined with respect to the anholonomic frame. Based on this, we derived the general Dirac equation in an
accelerated and rotating frame of reference beyond the  hypothesis of locality . This equation, however,
contains also residual imaginary terms, which are artifacts that due to coordinate transformations in the
non-inertial frames. To eliminate these terms to all orders, in present article, at first, we apply the standard
techniques used in relativistic quantum mechanics and quantum field theory, where non-Hermitian terms
can be removed via suitable similarity transformations. This standard method allows us to choose a
physically more suitable reference frame. We show that the expectation values of physical observables
remain real. No imaginary contamination remains in physical quantities. Thus the energy, momentum,
probability, etc., remain real and consistent. Secondly, we are interested in low-energy properties, avoiding
solutions with negative energy. In the method employed for reducing the Dirac Hamiltonian to non-
relativistic two-component form, in order to decouple the positive and the negative energy states, we use
an approximate scheme of the Foldy-Wouthuysen canonical transformation of the Dirac Hamiltonian for
a free particle. This is performed by an infinite sequence of FW-transformations leading to a deformed
Hamiltonian, which is an infinite series in powers of (1/m). Evaluating the operator products to the
desired order of accuracy, we derive the deformed, non-relativistic Hamiltonian. We then compute the
inertial effects for a massive Dirac fermion in non-relativistic approximation, which are displayed beyond
the “hypothesis of locality” as extended (deformed) versions of the standard effects. The latter are
well-known important inertial effects such as the redshift effect (Colella-Overhauser-Werner experiment),
the Sagnac-type effect, the spin rotation effect (Mashhoon), the kinetic energy redshift effect, the new
inertial spin-orbit coupling. Expanding further the deformation coefficients, several new effects will rather
appeared involving spin, angular momentum, proper linear 3-acceleration @ and proper 3-angular velocity
& in various mixed combinations.

Keywords: Teleparallel Supergravity—Spacetime Deformation—Inertia Effects—Quantum interference

1. Introduction

The quantum interference of De Broglie matter waves is vividly displayed after a notable development of
interferometric technique in the gravity-induced interference experiments with symmetric (sym.) and skew-
symmetric silicon interferometers. These experiments are reviewed by (Abele & Leeb, 2012, Hasegawa &
Rauch, 2011, Rauch & Werner, 2000). A wide, spatially coherent separation of neutron beams is feasible in
perfect crystal interferometers. In this case nuclear, magnetic and gravitational phase shifts can be created
and measured precisely. The effect of the Earth’s rotation on the phase of a neutron de Broglie wave is the
quantum mechanical analogue of the classic Michelson-Gale-Pearson experiment (Michelson et al., 1925)
using the optical " Foucault pendulum ” - the Michelson-Gale light interferometer - in which the rotation of
Earth yielded a Sagnac shift of the light waves. The offset in the fringe pattern introduced by rotational
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motion of neutrons was predicted by Page (Page, 1975). This effect was seen in the celebrated Colella-
Overhauser-Werner (COW) experiment (Colella et al., 1975). COW observed a quantum-mechanical phase
shift of neutrons caused by their interaction with the Earth’s gravitational field. The signal is based on the
interference between coherently split and separated neutron de Broglie waves in the gravity potential. The
interferometer is turned around the incident beam direction by some angle maintaining the Bragg condition.
The amplitudes are divided by dynamical Bragg diffraction from perfect silicon crystals. Acceleration-
induced interference is discussed in (Bonse & Wroblewski, 1983). They found a result which was within 4%
of the theoretical prediction. The (Colella et al., 1975) and (Bonse & Wroblewski, 1983) experiments have
the potential to test the equivalence principle (Kajari et al., 2010) for the nonrelativistic neutron waves.
Previously, the neutron Sagnac phase shift due to the Earth’s rotation was measured (Atwood & et al.,
1984, Staudenmann et al., 1980) and was shown to be in agreement with the theory of the order of a few per
cent. There are also forthcoming and more speculative interferometric measurements which are intended to
prove or disprove alternative theories and to search for extremely small effects where only upper limits can
be given. Some of the phenomena are already under investigation and a positive outcome can be expected.
However, the measurement of relativistic terms in neutron interference must await the development of highly
monochromatic neutron beams or the discovery of interferometric techniques for high-energy neutrons.

In the meantime, the theoretical studies of the relativistic quantum theory in a curved spacetime have
predicted a number of interesting manifestations of the spin-gravity coupling for a Dirac particle, see e.g. (Au-
dretsch & Schafer, 1978, Cai & Papini, 1991, 1992, Fischbach et al., 1981, Hehl & Ni, 1990, Obukhov, 2001,
2002, Ryder, 1998, Singh & Papini, 2000, Varju & Ryder, 1998, 2000, de Oliveira & Tiomno, 1962).

For a performing the laboratory measurements, it is necessary to give a theoretical description of the
measurements of accelerated observers. This is, usually, done via the hypothesis of locality ", used to
extend Lorentz invariance to accelerated observers within the framework of Special Relativity, see e.g. (Hehl
& Ni, 1990, Hehl et al., 1991, Maluf & Faria, 2008, Maluf et al., 2007, Marzlin, 1996, Mashhoon, 2002, 2011,
Misner et al., 1973, Synge, 1960) and references therein. However, many scientists found its basic conceptual
framework unsatisfactory. In general case, the hypothesis of locality will have to be extended to describe
physics for arbitrarily accelerated observers.

In Ter-Kazarian (2025b) (first article of three), we computed the object of anholonomicity and the
connection defined with respect to the anholonomic frame. Then we derived the explicit final form of the
Dirac equation for an observer in a reference frame that is accelerated with a three-acceleration @ and rotating
with angular frequency . However, the purely imaginary potential term from the Dirac Hamiltonian
is associated with non-Hermitian contributions due to coordinate transformations in accelerated frames.
Residual imaginary terms are artifacts. To eliminate to all orders these terms, in present article we apply the
standard techniques used in relativistic quantum mechanics and quantum field theory, where non-Hermitian
terms can be removed via suitable similarity transformations. This standard method allows to choose a
physically more suitable reference frame. The expectation values of physical observables remain real. No
imaginary contamination remains in physical quantities. Thus the energy, momentum, probability, etc.
remain real and consistent. We are also interested in low-energy properties, avoiding solutions with negative
energy. In the method employed for reducing the Dirac Hamiltonian to non-relativistic two-component
form, in order to decouple the positive and the negative energy states, we use an approximate scheme of the
Foldy-Wouthuysen canonical transformation of the Dirac Hamiltonian for a free particle. This is performed
by an infinite sequence of FW-transformations leading to a deformed Hamiltonian, which is an infinite series
in powers of (1/m). Evaluating the operator products to the desired order of accuracy, we find the deformed,
non-relativistic Hamiltonian. We then find the inertial effects for a massive Dirac fermion in non-relativistic
approximation, which are displayed beyond the "hypothesis of locality ~ as extended (deformed) versions of
the standard effects. The latter are well-known important inertial effects such as the redshift effect (Colella-
Overhauser-Werner experiment), the Sagnac-type effect, the spin rotation effect (Mashhoon), the kinetic
energy redshift effect, the new inertial spin-orbit coupling. Expanding further the deformation coefficients,
several new effects will rather appeared involving spin, angular momentum, proper linear 3-acceleration @
and proper 3-angular velocity & in various mixed combinations.

We proceed according to the following structure. To start with, in section 2 we eliminate a purely
imaginary potential from the Dirac Hamiltonian: the imaginary term Vijnag in subsect. ; the Vojmag to
first order in BCH expansion in subsect. ; the imaginary term Vimag to second order in BCH expansion
in subsect. ; and to higher order in subsect. . We consider non-relativistic approximation of the Dirac
Hamiltonian via FW transformation in section 4: FW expansion up to order 1/m in subsect. ; and FW
expansion up to order 1/m? in subsect. . Concluding remarks are given in section 4, where we review
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the key points of this report. Some technical details are collected in Appendix. Unless indicated otherwise,
the natural units, h = ¢ =1 are used throughout.

2. Eliminating a purely imaginary potential from the Dirac Hamiltonian

To make this article understandable, the interested reader is referred to the original papers (Ter-Kazarian,
2024a, 2025a,b, 2026) (see also (Ter-Kazarian, 2024b,c,d)). In addition, in Appendix A, we briefly review
the main points of the derivation of Dirac equation in non-inertial frame beyond the hypothesis of locality.

The Dirac equation (52) can be recast into the form (Ter-Kazarian, 2025b)

00V = H, (1)

with the deformed Dirac Hamiltonian

as) + 2+ |(@- X)(F- @) (2)

where dy = (éVbo—i—%oVbl_l), and ag = [3b4b0Vbl_1 —Vby]-U. The Dirac Hamiltonian (2) can be conveniently
rewritten . 5
H=wpfm(l+ad - X)+wsd-p—&-L
—’LU2&7'§+%(’LU46-&+1U5)+% [(d-)?)(ﬁ-o?) (3)

+(p-a)a- X,
provided, w1 = b3, w2 & = Wy, w3z = Z—i’,wm’ = dy, w5 = ag. The coefficients w;(X)(i = 1,2,3,4,5) are
time-independent scalar functions of X, (w;(X) € R?).

Let’s briefly interpret the physical meaning of each term before relating this to curved spacetime, see
e.g. Brill & Wheeler (1957), Hehl & Ni (1990), Hehl et al. (1991), Maluf & Faria (2008), Maluf et al. (2007),
Mashhoon (2002, 2011), Obukhov & Rubilar (2006), Parker & Toms (2009). Mass term, wy8m(1 + - X),
represents a gravitational redshift of mass energy in a weak field. This matches the Tolman redshift.

Orbital term, &- ()Z x p), describes Coriolis force and orbital coupling in rotating frames. This is effective
term of energy shift due to rotation. In general relativity, this is the Lense—Thirring effect — frame dragging
by rotating mass.

Spin-Rotation Coupling: wsy &-&. This is the Mashhoon effect. This is spin experiences torque in rotating
frames, which is analogous to magnetic dipole in a magnetic field. Can be derived from the spin connection
w/‘jb in curved spacetime: spin term ~ ify“’ybwabu.

The symmetrized inertial boost term,

o [(c‘i' X)(7-a)+ (7-a)a- )Z')] , arises from a non-inertial, accelerated, frame and reflects: boosts in the

Dirac equation, and the non-trivial tetrad field structure. This term can be derived from the Fermi normal
coordinates for a uniformly accelerated observer.

Residual imaginary terms figured out in the Dirac Hamiltonian (3) are artifacts that due to coordinate
transformations in the non-inertial frames. In what follows, we will show that these are usually negligible
under the assumption that b1, b3, by vary slowly with X , S0 their gradients are small, and these corrections
are suppressed. Moreover, the standard method of similarity transformation of the Hamiltonian allows one
to choose a physically more suitable reference frame. The expectation values of physical observables remain
real. No imaginary contamination remains in physical quantities. Thus the energy, momentum, probability,
etc. remain real and consistent.

To eliminate to all orders the purely imaginary potential term, from the Dirac Hamiltonian (3), associated
with non-Hermitian contributions due to coordinate transformations in accelerated frames, we can apply
the standard method, which is inspired by techniques used in relativistic quantum mechanics and quantum
field theory, where non-Hermitian terms can be removed via suitable transformations. Such technique often
appears, particularly in contexts like axial vector couplings, spin-orbit interactions, or anomalous terms
in the Hamiltonian. This can be addressed using Foldy-Wouthuysen (FW) transformations to remove off-
diagonal terms in the previous literature on the Dirac Hamiltonian, especially Anandan (1977), Birrell &
Davies (1982), Bjorken & Drell (1964), Foldy & Wouthuysen (1950), Greiner (2000), Mostafazadeh (2002),
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Obukhov (2001), Tsai (1981); also methods similar to those found for chiral rotations and axial terms Bjorken
& Drell (1964), Peskin & Schroeder (1995); and non-Hermitian potential removal Bender & Boettcher (1998).
We begin by removing a purely imaginary term in (3) via a similarity transformation to first order in
BCH expansion. For the Dirac Hamiltonian (3)

H = HO + ‘/imaga (4)

where Vimag = Viimag + Voimag, Viimag = %wg) is the scalar imaginary part, Viimag = %wu’i - @ is the
matrix-valued imaginary part, and the part of Hamiltonian Hy free of imaginary contributions

< b
+
S
w
QL
Sy
|
&l

ST ]

(@) + (7~ @)@ %)) ©)

we define a local similarity transformation of the spinor

U(X,t)=S(X,t)¥(X,t),
where S(X, 1) is an invertible matrix (in spinor space). Substitute this into the original Dirac equation (1):
i[(808) ¥ + S (9pV)] = H (S D).
Multiply from the left by S~', and rearrange to isolate i9y¥
i00V = (ST'HS — i S71(9,9)) ¥.
Hence, the similarity-transformed Dirac equation is
P90 (X, t) = H(X,t) U(X,1),
where the transformed Hamiltonian becomes
H(X,t)=S"Y(X,t)HS(X,t) —i S~ (X,t) S(X,1). (6)
The final similarity transformation of the full Dirac equation reads
i 00U (X, 1) = [STHX,t)HS(X,t) —i STV (X, t)(0S(X, 1)) ¥(X,1). (7)

We further define the generator S(X,t) in the form

S(X,t) = S1(X, 1)) 5 (X)). (8)
This, incorporating with (1), give
H(X) = 8,1 (X) {[S7(X, ) (Ho + Viinag)S1(X, )] + Vaimag } S2(X), (9)
which becomes ~ ~
H(X) = 57 (X) 1 (X) Sa(X) + Vo (10)
Hi(X) = 87 (X, £))(Ho + Viimag) S1(X, t)).
2.1. Removing an imaginary term Vijmag
According to (10), our strategy will be to start with the full Dirac equation
i 0¥ (X,t) = (Ho2 + Viimag) V(X 1), (11)
where Hpz := Hg + Vaimag, and redefine wave function
U(X,t) = S1(X,1) U1 (X, 1) = PN Ty (X, 1), (12)

to eliminate, at the first step, a purely imaginary potential Viimag, where F (X,t) is to be determined.
Compute the time derivative Jg¥ = (9o F)ef" ¥y + e 9y¥1, and substitute into the Dirac equation,

1 (80F)€F\:[11 + €F60\I/1] = (H()Q + §w5)eF\I/1. (13)
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Cancel the common factor ef’ (which commutes since it’s scalar):
o 3 . ~ = i =
10gV1 + ’L(aoF)\Ifl = HypU + §w5\I/1. (14)
Rearrange _
S ~ - A =
10gV1 = Hl(X)\Ifl = HpW, + 511}51111 — Z(aoF)\Ifl. (15)
We require the term %wyif to disappear. This suggests the following condition for cancellation to be satisfied

i(O0F) = —gws = OF = %wg,(X). (16)

Since ws(X) is time-independent, we integrate over time F(X,t) = $ws(X)t + const., and (const.) set to
zero. Thus the wave transformation reads

W(X, ) = S1(X, )0 (X, 1) = ez (00 Gy (X, 1),

1
i00 W1 (X, t) = Hi (X)W = Hop W1(X,1). "
We now turn to momentum-operator consistency check. Namely, starting from
iV = (Hop + Lws)V,
and using ¥ = ef’ (X’t)\ill, according to the momentum replacement rule, p — p — iV F, we get
e " Huge!" = Hoa(p — p — iVF). (18)
This expands to Hyy = Hyy — iAH, with
AH =w3(X)a-VF
1) (0. X)(a- VF) + (a- VF)(a- X)). (19)
The transformed equation is then
1000 = Ho2¥ — i(0oF) ¥ + Lws(X)P. (20)

To eliminate the scalar imaginary part, we now require
1
AH+ OF — §w5(X) =0.

For scalar cancellation, VF must vanish (otherwise « - VF produces non-scalar terms). Hence VF =
%tVfw5(X ) = 0 only, so AH = 0, leading again to
1 1

80F = §w5(X) = F = §w5(X)t.

Final results is ) ~
U(X,t) = e P (X 1),
la()\i/ = H()Q\i’,

and the momentum replacement rule, p — p — iVF), is inert here because as we noted earlier the position

scalar functions, b1, b3, by vary slowly with X , so their gradients are negligible, and these corrections are
suppressed:

(21)

VF = {tVws(X)

— %tv {%[(VZM - 3b4bovbl_1)] ) U} -
t | b3vb1—b, Vb —2 0

L (B (Tb, + 3bybob 2Vh) - 0) (22)
+ 2 {(V201)7 + 3]V (babob7 ) (Vb - 7)

+b4b0b;2(v2b1)77} } ~ 0.
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2.2. Removing the V3jyae to first order in BCH expansion

According to our strategy (10), we next redefine the wave function
Wy = S5(X)) W(X, 1), (23)
and perform the second similarity transformation on the Dirac Hamiltonian
H = Hy + Vaimag,

provided that we choose S such that the imaginary potential

i 2\ o o
‘/Qimag = 5 (w4(X) a- a)a
is eliminated to first order.
Dropping the index 2 at Sz and Vajyag, this equivalents to performing similarity transformation on the
Dirac Hamiltonian
H =e¢°He ¥ ~ H + [S, H],

and choose S so that H' becomes Hermitian to first order. Namely,
Im(H') =0,

or

Vvimag + [S, HO] + [Sa Vvimag] =0.
We assume S is of the same general structure as Vimag,

1

5=

F(X),

with f ()Z' ) a real operator-valued function to be determined.
Compute [S, Hp]. Since f(X) depends only on X, non-trivial commutators come only from momentum
terms in Hy, i.e.

—

H[) D) wg(X) (O_Zﬁ)

All other pieces (mass, spin, rotation couplings) commute or give higher-order effects. We computed

Thus,
i 1
S, Ho| ~ §[f7 Ho| = —Swsd-Vf, (24)

and

1

4
Since f,wy are scalar functions of position and commute with &, [f, w4 a@ - @] = 0. To remove the imaginary
term, we impose the condition

[S7 Vimag] = [f, W4 a- 52].

—%wgc_i-Vf: —%w462'c_i.
Hence we
Vf=i—a,
w3
and

X v/
f(X):i/ wilX) & g%

Generator is

. — X’ X’/ . —
S=ifX)=-17 Zi&; i-dX/, (25)
and transformed Hamiltonian (to first order) becomes
H' = Hy— twsy(X)a-Vf(X) = Hy — dws(X)@-a. (26)
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2.3. Removing the Vj,, to second order in BCH expansion

Next, for BCH expansion to second order, we use

H'=H +[S,H]+ 3[S.[S, H]|

= Ho + Vimag + 15, Hol + 15, Vinas] + § (15, [, Hol] + 15, 5. Vimael) 0
where the second-order corrections are
SH®) = L[S 18, Hol) + 5[5, [5. Vies]).
Taking into account (24) and S = % f (X), we have
15,5, Hol] = ~ws[S, - V1],
The @-V f commutes with f, therefore, [S, [S, Hp|] = 0. So in this approximation, the dominant second-order

correction from the kinetic term vanishes. However, let’s check whether momentum dependence hidden in
Hj could yield higher-order pieces. More precisely

)
(S, [S, Ho]] ~ i[fa (S, Hol] o< 03 f 05 f [pi,pj] = 0,
so indeed, it vanishes to all orders in V f. Since [S, Vimag] = 0, it follows that
[Sv [57 Vimag“ =0.
Now let’s look at the extra commutators that were neglected previously. Since L=2Xx D, SO
7
(S, L] = ieijk[fv X;pk)

and [f, X;] = 0, we have

Hence 1.
[S,L] = §X x Vf
Therefore,
(S, —&- L] = —%(w x X)-Vf
So, because of Vf = i% a, we have
1S, ~& - L] = —;Zi(w x X)-d

This is purely imaginary, so this term must be taken into account if we want to remove all imaginary
contributions. Since f and wy are both scalar functions of X, [f,ws] = 0. so spin term commutes:

1S, —wy & - S] = 0.
Second-order commutator with angular momentum term also is zero:

S, [S,—@ - L]] = 0.

So higher-order corrections from this channel vanish too. Collecting all second-order results together, we
obtain H® = 0. To remove new imaginary piece induced by rotation coupling, one could adjust S by
adding a small correction

55 o (@ x X) - @,
but that goes beyond current order. Since all second-order nested commutators vanish, final explicit form
(up to second order) reads

H'~ Hy— w3 @ - V[ + Vimag + [S, —& - L]

_ ) - = T w4 [~ - —

—H0—§’IU4OC'G—§UTS(WXX)'G/.
G.Ter-Kazarian 232
doi:https://doi.org/10.52526/25792776-25.72.2-226

(28)


https://doi.org/10.52526/25792776-25.72.2-226

Hermicity and non-relativistic limit

As we see, the main imaginary potential %w4 a-a is removed by the transformation generated by S. However,
in a rotating frame (& # 0), an additional imaginary correction term, —%ﬂ(w x X) - @, arises. All second-
order BCH contributions vanish, so higher corrections are negligible to thls order.

Let’s now explicitly verify that the modified generator S = Sy + Sy, where
=if(X), with Vf=i%g (29)

and
S1=139(X), with (@xX) Vg=-i"(GxX)-d (30)

really cancels both imaginary pieces: the original Vimae and the rotatlonﬂnduced imaginary correction

—%%(w x X ) - d@. Equivalently, the gradients of f and g are
w wy (@ x X) x a
Vi—i%a  vg— g @xX)xd
w3 w3 |Jx X|?

up to functions constant along rotation orbits. Computing [S, H] to first order

[S, H] = [So, Ho] + [S0, Vimag| + [S1, Hol + [S1, Vimag]; (31)
We analyze each term carefully. Previously we found [Sy, Hp] =~ —%wg,d’ - Vf. Substitute Vf = zlw“—éé'.
[So, Ho| = —%w4 a - a. This term cancels Vinag exactly
1 L oL 1 - o
Vimag + [So0, Ho] = qwad-d—cwyd-d 0
We computed earlier [Sy, —& - L] = —%%( @ x X)-@. This is the undesired residual imaginary term we want
to cancel. By the same rule,
1 -

[S1,—d - L] = —5(@' x X)-Vg
Now substitute the defining condition of g(X) (30)

[S1, —& - L] = %%@ x X)-a@

is exactly the opposite of the residual imaginary term from [Sy, —@ - [_:] Thus the two cancel: [Sy, —& - E] +
[S1,—& - L] = 0. The S; depends only on position so [S1, w1 fm(1+a-X)] =0, and [Sy, —wy - §] = 0,
hence [S1,d - p] =id - Vg. But this yields —*wg a - Vg, which is real, so it does not contribute to imaginary
terms and can be retained as a Hermitian correction. Finally, the [Sp, Vimag| and [S1, Vimag], both vanish
since f, g, w4 commute with @ and themselves Collect all terms to first order

(S, H] == (—%wsd - a@) + (—%M(
+ (—3wsd-Vg) + (+1M(J5X)_(' .

2 w3

(32)
The second and fourth terms cancel exactly. The first term cancels Vipae. The remaining piece is real:
—%wg @ - Vg, which is Hermitian. Thus we explicitly verify that the modified generator

S = Sp + 51,

really cancels both imaginary pieces: the original Vin.e and the rotation-induced imaginary correction.
Thus final transformed Hamiltonian (Hermitian to first order) becomes

H' = Hy— 3wsd-V(f+g), (33)

with all imaginary contributions cancelled.
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2.4. Removing the Vj,, to higher order in BCH expansion

We now turn to a higher order — up to third order terms (the first genuinely new corrections) —
and understand their structure, Hermiticity, and physical relevance. With the full BCH expansion, the
similarity-transformed Hamiltonian is written

H' =eHe S = H+[S, H] + %[5, [S, H]]

L[S, [S.[S, H]]] + (34)

Define the nested commutators
Cy =[S, H],
Cy :=[S,[S, H]],
03 = [57 [Sv [Sv H]H7

etc. Then . .
H/:H+C1+*Cg+703+”'

We recall that S is purely 1mag1nary, S = LF(X X), where F (X) = f(X) + g(X) real. Therefore ST =
—S  (anti-Hermitian), and e is unitary, so H " = eSHe™® is Hermitian if H is Hermitian. However,
H itself contains Vipag, which is non-Hermitian, so higher-order commutators will restore Hermiticity by
generating real compensating terms. We start from H = Hp + Viyag. We already know from the first-order
analysis that [S, Vimag| = 0, and [S, [S, Vimag]] = 0. The similarly all higher nested commutators with Vimag
vanish, because S and Viy,g are both functions of position and Dirac matrices that commute. Thus we can
focus only on the Hy part:

Cr= [Sa HO]a Cy = [57 [Sa HOH? Cs = [Sa [Sa [Sa HO]H

We already have the first
Ci =[S, Ho] —ng( X)d-VF(X)

35
—5(@ x X) - VF(X) + (real spin terms). (35)
Let’s start with C7 = wg a-VF, so
1
CQ = [S, C1] = —§w3[5,& . VF].

Now, S = %F , and both ws and F' are scalar functions of position. Then

7

1S,&-VF|= L& [F,VF] =0,

[\]

and that Cy = 0. Thus, the second-order correction %Cg = 0, consistent with our earlier approximate
result. Similarly, since Cy = 0, all higher nested commutators vanish as well C5 = [S,C3] = [S,0] = 0. We
might worry that wg(f ) is position dependent and that Hy includes momentum operators, so higher-order
terms could appear via: [S, [S, w3(X)a - p]]. Let’s check that carefully. Using the basic commutation rule:
[ps, f()?)] =—3 8if()2), and S = %F(f), we can compute explicitly

1
[S, w3 Ozipi] = —§w307 -VF.

Then .
[S, [S, 'LU30_2 ﬁ]] = —§w3[5,07 . VF]

As above, [S,VF] = 0. Hence, Co = 0. And recursively all higher nested commutators vanish. Therefore,
the only potentially nonzero higher-order contributions would arise if the operator ordering between ws (X' )
and p were not fully symmetric, or if the gradient acts nontrivially on ws. Let’s include that subtlety now.
Correcting for noncommuting wg()z ) and p, we compute exactly

[S, Ho| = [F w3 a - ﬂ—*wg[FOé P+ = [F ws]a - p.

The first term gives —*’wg a@-VF, as before, The second term gives zero. Thus, even accounting for operator

ordering, no new terms appear at higher order. Clearing the general BCH pattern for scalar S = ;F (X ),
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note that if S depends only on position and Hy is at most linear in p, the BCH expansion terminates after
the first commutator e’He™% = H + [S, H], because every further commutator introduces an additional
factor of [F,[F,p;]], and since [F,p;] is a c-number function (derivative), the higher double commutators
vanish: [F, [F,p;]] = 0. So for all such cases

[57 [SvH]]:()? [57 [87 [SﬂHm =0,

etc. This means that the BCH expansion terminates exactly for this class of generators and Hamiltonians.
Hence final full transformed Hamiltonian to all orders becomes H' = eSHe™® = H + [S, H], with

S=3(f+9) Vi=ipd, (36)
(cUxX)-Vg:—i%(cUxX)-c?.

Substituting [S, H| explicitly, all imaginary terms cancel and we obtain a purely Hermitian effective Hamil-
tonian

1 -
H' = Ho = Sus(X) @ (f +g).

Since higher-order commutators vanish identically, this result is exact (not just approximate) for all orders
of the BCH expansion in this case. From definition of g, we need Vg itself, not just its projection. To
satisfy this relation, the minimal choice for Vg that preserves the symmetry and dimensional structure is

Vg=—i % a |, where @ | is the projection of @ perpendicular to & x X, i.e.
L (@ xX)[(@xX)-a]
a, = — .
| x X2

However, it is more illuminating to express the total contribution directly in operator form, keeping
the vector structure (&J x X) explicit. Then —%wg& -Vg = Jwyd - a1, whose projection along (dJ x X)
cancels the residual imaginary term coming from [S, —& E] Collecting all terms together, the full Hermitian

transformed Hamiltonian becomes

H =w(X)pm(1+a X)+ws(X)@ - F—& - L—wy(X)@- S

42590 (7. %) (7 8) + (- @)@ X)] - bus(£) @ VA(X) — us(D) - Vg(X) BT
Substituting the explicit gradients

H =uw(X)pm(1+a X)+ws(X)@ & L—w(X)3- S

+2280 (@ %) @)+ (7 @)@ X)) =~ jua(R) -+ (X)) @DNG0 38)

The last two correction terms (those proportional to w4) come from the similarity transformation and can
be grouped as:

Hly\ = —dwy(X)a- [5_@ ' (39)

corr ‘QXX‘Q
The quantity in brackets is the component of acceleration perpendicular to the rotation plane G|, @, = d—aj.
thus H . = —%uu()? )d&-d,, i.e. only the component of acceleration orthogonal to the local rotation plane

survives in the Hermitianized Hamiltonian. The final explicit Hermitian Hamiltonian reads

H =w(X)pm(l+a X)+ws(X)d@ - L —wy(X)&- S )
+220 (@ X) (5 @) + (5 @)@ X)| - swa(X)a- [a- %} .

All coefficients are real, and all imaginary potentials have been systematically removed by the similarity
transformation. Higher BCH terms vanish identically, so this H' is exact to all orders in S.

Recall that the key properties of the similarity transformation are as follows: H' = eSHe ¥, where
S = %(f()z) + g(X)), with f, g real scalar operators (functions of position). Then ST = —S, e is unitary.
Thus, the transformation ¥ = ¢’ ¥ is a unitary change of representation. This implies

<V >=< U|e5 e ¥ >=< V|V > .
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Therefore, probability is conserved. All expectation values of properly transformed observables are real and
physically consistent. Actually, let O be any physical observable (Hermitian operator) in the original frame.
Then under the transformation O’ = e®Oe™°, ¥ = 5, the expectation value of O in the physical state
is invariant

<O >=<VO|¥ >=< V[eS0e 7|V > =< ¥|0'|V > .

Thus, although H was non-Hermitian, the similarity transformation makes it unitarily equivalent to a
Hermitian H’'. Therefore, expectation values of all physical observables remain real. Let’s check Hermiticity
of H = Hy+ H!,, directly: Hy is Hermitian by construction (it contains only real coefficients and Hermitian
operators: (8, &, p, E, S ). The correction term is also Hermitian (the overall minus from ¢ and the Hermiticity
of @ cancel). Hence H'' = H’. So the transformed Hamiltonian is exactly Hermitian. Then for any
normalized spinor ¥/, < H' >=< W'|H'|¥’ > is guaranteed to be real because H' is Hermitian. In particular,
we have for energy eigenvalues

H'|V, >= E,|V! > E, € R.

Thus we provide a rationale for the fact that all physical observable quantities, including energy, momen-
tum, and probability, remain real and physically consistent. Since the key properties of the similarity
transformation we used are merely unitary representation transformations, probability density is, therefore,
conserved:

o =0ty = oy,

The corresponding transformed Hamiltonian H' is Hermitian, and therefore the physical theory described
by H’ is completely real and consistent.

3. Non-relativistic Approximation via Foldy-Wouthuysen Transformation

The derivation of the Dirac Hamiltonian in non-relativistic approximation is usually accomplished by
following a sequence of FW-canonical transformations Foldy & Wouthuysen (1950). The corresponding
unitary operator can be easily obtained for the free Dirac particle (64). But in most cases for a fermion
interacting with an electromagnetic field, or in the case of going beyond the locality hypothesis that we pursue
through deformations (?7), there is no room for exact FW-transformation. An approximate scheme can be
used instead. The FW-transformation must now be made by an infinite sequence of FW-transformations
leading to a deformed Hamiltonian, which is an infinite series in powers of (1/m). In this way one can obtain
the proper non-relativistic limit for the Hamiltonian representing a free Dirac particle beyond the hypothesis
of locality. The essential reason why four components are in general necessary to describe a state of positive
or negative energy in the representation of the Dirac theory corresponding to (65) is that the Hamiltonian
in this equation contains odd operators, specifically the components of the operator &. Observe that an
odd operator is a Dirac matrix which has only matrix elements connecting upper and lower components of
the wave function, while an even operator is one having no such matrix elements. It should be noted that
although the CT transformation follows the same mathematical principles as the previous one, it is far from
obvious that it can do the same thing to achieve the high energy limit for the Dirac Hamiltonian. This is
because it is unclear how to classify the Dirac Hamiltonian into a high-energy analogue of odd and even
operators, as found in the FW approach, in order to systematically remove unwanted terms. An undesirable
consequence of this impasse is that it becomes impossible to analyze the motion and properties of fast
moving massive particles in the presence of fields without arbitrarily setting their mass equal to zero in the
Hamiltonian. Obviously, this excludes any possibility of comparing the behavior of these particles with the
behavior of strictly massless particles.

To start the explicit calculations beyond the locality hypothesis, where a Dirac particle is subject to
interactions (deformations), we can go over to the Hamiltonian (10) and apply the FW-transformation
method up to the third-order in (1/m), assuming the particle’s momentum is small compared to its rest
mass energy (i.e., non-relativistic limit). Therewith we drop the last term because it is of higher order term
with respect to non-relativistic limit we are going to deal. The reduced Hamiltonian can be rewritten in
more convenient form for dealing with FW-transformations to derive its non-relativistic limit:

H=p8m+E&+0, (41)
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where we split Hamiltonian into even and odd parts

£= (wl—l)ﬁm—i-wlﬂ a-X—-a- E

o (I)'_}&’ (42)
—wga-p+7{( X}

\_/
—
Ql
~
+
Ql m

where, £: even operators (commute with (3,) diagonal, O: odd operators (anticommute with (), off-diagonal,

1w Bmad X ) }
2.9((@- X)(7- @) + (- a)(@- X)),

are the extended energy-momentum redshift effects, the —@ - Lisa Sagnac-type effect, the —wo &J - & is an
extended rotation-spin coupling.

We will perform three canonical FW - transformations to eliminate the odd (off-diagonal) components
from the Dirac Hamiltonian order-by-order in (1/m). In the method employed for reducing the Hamil-
tonian (1) to non-relativistic two-component form, following Bjorken & Drell (1964), we introduce the
FW-transformation by ¥/ = ¥, The BCH expansion gives

H' = e"(H —idy)e ™ = H +i[S, H] — idy + O(1/m?).

Since we neglect time-dependence in fields (i.e., inertial fields are time-independent), we ignore the —idy
term for now. Consider the first FW-transformation with just the terms through order unity:

H' = "(H —idy)e ™ = H +i[S, flm

and require that the odd term in Hamiltonian H " vanish. This gives the FW canonical transformation
generated by the Hermitian operator S := —%(’), such that

i[S, Bm] = i [—;fl(’),ﬁm] ~ o,

and only keeping terms of order 1/m, we get

H' = Bm + € + O +i[S, Bm] +iS, ).
—_—

(43)
=0
We apply a second FW-transformation using the same prescription but now with S’ := —%O’ , where O’
defines new odd term
O :=i[S, €] = [(’) &l — 2. (44)

3m

Taking into account that: i[S’, Bm| ~ —O'; i[S’,E] ~ %[(’)’,8} (even); and i[S’, @'] is higher order (odd);
the transformation
H" =H' +ilS" H'| +

gives
H" = Bm + £ + even terms + O”,

where the new odd operator (which we will ignore beyond this order) will be

A
2m

O i 0+

OII —
3m2  8m?

O, ] —

At this point we restore also the time-dependent ((9 # 0) term just for illustration purposes. Finally, we
apply a third canonical transformation S” := —%(9’ ', After three successive FW transformations, the FW
method yields the block-diagonal standard FW transformed Hamiltonian up to order 1/m? (dropping triple
primes):

H=8 (m + & Smg) +E— 5 [0,0,€] - gia [0, @} + O(1/m2). (45)
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3.1. FW expansion up to order 1/m

Assuming all fields are time-independent (O = 0), our goal is to compute the FW-transformed Hamilto-
nian to O(1/m?). The expansion of FW Hamiltonian up to order 1/m is

HFW:B<m+02> +E—L[O,[O,E]]+...

2m 8m?
Define
O:=w3(@-p+A4), (46)
with )
A= (@ D)@+ @ @@ X)), (47)

Computing O?, we use the identity (& -p)? = p? - I1x4. Rather than computing this fully now, observe that

the {@ - p, A} term and A? are both second order in momentum, and produce contributions proportional

to p2, (a- )2)2, etc. But we're interested only in the even part — so we retain scalar terms and drop odd

contributions (off-diagonal), which will vanish at first- order correction. Thus O? = w3 [p? + A(X, )] .

where A(X, ) denotes acceleration-coupled terms like: (@- X)2(5- @)%; -(@ - X)p?2,; and spin-independent.
To evaluate the 6H®?) = —#[(’), [O, £]], note that

£ =(w; —1)Bm+wfmi X —&- L —wyd - 3,

~
scalar scalar

and split this into two parts: scalar parts — commute with O and spin-orbit parts — contribute nontrivial

commutators.

.

For computation of the double commutator [O, [0, - L]], we first write the first commutator
(0,5 -] = wy [@’-mA,w-E} .

Since A is a symmetrized operator involving & - p multiplied by a scalar function, the total first commutator
becomes

-,

(0,5 - ] = iwsd - (& x ) [1 n (a-)?)} .
Computing the second commutator
[0,[0,6 - L)) = [0, iwsd - (& x p)(1 + @, -X)]
focus on the operator inside Q := @ - @, where Q' = (& x )(1 + @ - X). Then,
0,Q] = ws[d- 7+ A,a- Q.

Therefore, we obtain - - S
[@-p,a-Q = 2ie7kTEQYpt + afad [p", Q"].

Now use ]

oQ"

oxt’

so that
[@-p,a-Q=2i(X-(Q xp)) —ia'al5;Q".
Similarly, the commutator with A will produce higher-order terms in @ and momenta, negligible at second

order in 1/m if @ is small. Thus, dominant term is

[0,[0,& - L]] ~ 2iw3Y: - (Q’ X ﬁ) + gradient terms.

Finally we obtain
[0,(0,&- L] = 2iwis - (1+ad- X) [p(& - p) — dp?] . (48)

Next, evaluating [O, [O, wadd - 7]], the key commutator will come from
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and as [@- P, 0] = 0, hence [0, wa@ -] =~ 0, implying for the double commutator [O, [0, ws@ - 7] ~ 0. Finally
we assemble the FW Hamiltonian to order 1/m?:

1
pr:Bm+5+£(92

om - WK)? [O,EH,

and putting everything together, it reads

Hpw = ﬁmw1+ﬁmw16'X WL —weld- o

. ~ ~ ~ (49
LBk BRS04 G. X) (@@ ) 4+ )

where ... denote smaller correction terms involving gradients of the position-dependent scalar functions
wl()z ), as well as higher order in @. We complete the derivation of the full FW Hamiltonian (419), by
clarifying the acceleration-dependent terms and carefully writing out the gradient corrections that arise
due to the position dependence of wl()z ) and the acceleration vector @. In the Hamiltonian, acceleration
enters via: the scalar potential term Smw-a - X ; the modified odd operator O contains symmetrized terms
proportional to (a - X )(P' - d@); and gradient terms come from commutators of momentum with position-
dependent scalar functions wl()? ). The FW Hamiltonian contains the following acceleration-dependent
terms:

Hpw D Bmuw; +Bmw1a X+ ﬁw3 Sp2(1+a- X)

(50)
G L —wy@ -5+ 2 (axm+f;“gz (1+a-X) [@p? —p@-p)].

Now calculate [O,[O,£]]. Since £ contains position-dependent scalar terms and spin couplings, focus on
gradient terms; operators like p’ act non-trivially on wi, ws,ws and @- X. The double commutator generates
spin-orbit-like terms, e.g.

[0,]0,€]] ~ —2imwifs - [V(wlc?- X) xﬁ] Yo

plus corrections involving Vws and VdJ, which couple spin and momentum.
Putting all together, the full FW Hamiltonian for the generalized Dirac Hamiltonian with position-
dependent scalar coefficients w;(X) and acceleration @, rotation & becomes

przﬁmw1+ﬁmwld-)z+%w§(( )_(’)"2sz (ax@)fﬁ.fjfw%j.g 1)
_, 51
+lwds [V(wld.X) xﬁ] +o

The ellipsis ... stands for additional gradient terms from w;, higher order terms in 1/m?, and corrections

due to the rotation &. This Hamiltonian explicitly incorporates the acceleration @, rotation &, and the
spatial variation of the scalar functions w;(X), capturing the main physics at order 1/m.

3.2. FW expansion up to order 1/m?

The expansion of FW Hamiltonian up to order 1/m? can be written
Hiw = 8 (m+ 2 — &5 ) +€ = 50,0, €] + (52)

Thus we aimed to evaluate O2, O* up to terms with gradients of wz(f ) and @, compute the double commu-
tator (O, [O, £]], and extract gradient and rotation corrections explicitly.

Write ws3(X) explicitly in the product O = ws3(X) [07 P+ s{ad- X, a- ﬁ}} . After some calculation this
yields

—

02—w3((1+a X)p2?—i%- (axﬁ))
—jws3 (orng—}—% EL’~X,62-VU)3}) (53)

where we use the identity, & -pa-7g=p ¢+ iy - (P X q), to evaluate the second term.
First commutator in [0, [O, £]] reads

[0,&] = [wsd-p+....E] mwsld-p,E]+ ...
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The @-p’ does not commute with position-dependent scalars wy, we, e.g. [p;, w1| = —id;w1, also the L = X 7
introduces further commutators, therefore explicit terms are [@ - p, w;Bma - X | = —ifma -V (wl
Similarly, [@ - P, wedd - ] = —id - V(wadd - &). Then the double commutator is equal to

(0,[0,&]] ~wild-p,[a-p,&]] +...

Using the identity for double commutators and the Pauli matrix algebra, this generates spin-orbit coupling
terms

(@ 7 (@ 5.E)) ~ —2imS - (V (wd- X) x5) +...

For {a- X,d- Vws}, write symmetrized operator 3 ((d’- X)(@- Vws) + (& - Vws)(@ - )Z’)) . Replacing & as
before and applying the identity, after some algebra this yields terms like

@ X)Vws - 5+ i ((a- X)Vuws x 5)

plus additional symmetrized corrections. Also recall the spin-orbit-like terms Th = — %&'

4m?2
(V(wlﬁ'i) X p) and T = 2w3
- (V(waid) x p). These are standard spin-orbit coupling terms generalized by scalar functions wi,ws and
position dependence. Hence, the gradient terms given in Pauli 2-spinor form become

d o
Hé%rva): w3 & - (Vws X p)

— 1 W3 ng P+ p- Vws)

g- ((a-X)ng xp)

— 1w ((a’-)?)vwg PP (@ X)vwg)
(V(wlaﬂf(’) X ﬁ)

(V(wa@) x p) + ...

Notes: The terms proportional to - (V f x p) describe spin-orbit coupling with space-dependent coefficients.
The —i(Vf-p+p-Vf) terms correspond to Hermitian symmetrized momentum-dependent potentials (like
generalized Darwin terms). Terms with (a - X ) multiply the gradients and represent acceleration-dependent
corrections to these couplings.

Putting together all the terms derived above, a final full FW Hamiltonian including the gradient terms
H%l{,?,d up to order 1/m?, with all B factors correctly restored, is written in the two-component Pauli spinor

1
+%’w3

form: .
HFW = Bmwl(l + a- X) + ﬁﬁwg (52
+2(6-X’)ﬁ2> 5L
—|—B21nw36 (ng X ﬁ)
—Bimws (Vws - p'+ p'- Vws)
+62mw30 < a- X YWws x p)
~Baws (@ X)Vws - 5+ 5 (@ X) V)
B wls - (V(wlc?- X) x ;5)
+Bﬁw§5‘ (V(wad) x p) + - -
The standard case of a rotating/accelerated frame corresponds to removing all position dependence of the
metric-like scalar functions w;(X). Namely, to obtain low-energy FW Hamiltonian in the two-component
(Pauli) limit, we simplify all terms in the full FW Hamiltonian (55): Zeroth-order term becomes standard
rest mass energy + inertial potential, First-order kinetic and inertial /spin effects match known inertial and
spin-rotation couplings in low-energy relativistic quantum mechanics. Similarly, we obtain standard second-
order relativistic and spin-orbit-like corrections: Kinetic energy correction, Spin—acceleration—gradient term,

Spin-rotation gradient. Gradient corrections vanish in the w; — 1 limit. Putting together all these terms,
we obtain the low-energy FW Hamiltonian in the two-component (Pauli) limit:

HE = pm(1+@- X) + B (1+a- X) p?
—&-L— -E+6%E-(c‘ixﬁ) (56)
—Baspt 4+ B2 (@ X P) — B2 - (@ X D)
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L L) (@ x p)] . So we can also write

Now combine similar terms ﬁi . [(% + 52

Hi = pm(1+a- X’)+52 (1+a-X)p?
—3-L-&- E+ﬁ2 (55 + 125) (@ % P)]
_68m3 /34 2 (wxm

This matches the known low-energy FW Hamiltonian

Hyw = fm+ L — B —5- L33
+B5=% - (@ X P) + -+

Including higher-order spin—inertial terms,

—i—ﬁ (axﬁ) 6 (wxﬁ)

we get perfect agreement. Final conclusion is as follows: taking the flat-space limit of full FW Hamilto-
nian (55), this reduces precisely to the known low-energy limit of the standard Dirac Hamiltonian in an
accelerated and rotating frame. This includes all known inertial, spin—inertial, and relativistic corrections
to O(1/m?), and all gradient corrections vanish, as expected in flat backgrounds. Thus the important in-

ertial effects in the non-relativistic approximation are now derived by the full Hamiltonian (

) beyond the

“hypothesis of locality . These effects are displayed as extended (deformed) versions of the standard ones:
namely, extended redshift (Bonse-Wroblewski — COW); extended Sagnac type effect (Page-Werner et al.);

extended spin-rotation effect (Mashhoon); extended redshift effect of kin.
spin-orbit coupling.

energy; extended new inertial

Expanding further the deformation coefficients w;(X) into the series in powers of the o(3) (??), several
new effects will rather appeared involving spin, angular momentum, proper linear 3-acceleration @ and

proper 3-angular velocity & in various mixed combinations.

Actually, expansions for the functions by, by, ba, b3, by to second order in (), read

bi(0) = 1 — Fovl — 10*(1 + (v1)?),

ba(0) = —V20 — 0*vl,

bo(0) ~ 1+ YEovl + 10*(3 4+ (v1)?),

bs(o) ~1—a X + Vfgvhr 1o% (34 (v1)?),
bi(o) = V25 + 50*%

Based on these premises, we compute the expansions of the position scalar functions wq, we, ws:

wi(e) m1—a- X + %2 v+ 1023+ (v1)?2),

wy(0) ~ Y28 + 3L
—l—ﬁ(vf) (V! x 9)

X
<
>

The further vector form of the set of expansions w;(X) (i = 1,2,3) is given

w(X)=1—a X+ %2 ov' + 1023+ (v1)?),
'LUQ()?:)% ‘ﬁ)%(l_%w )+2\5><X\(1_% 2)’
wy(X) = 1—aX +v200" + 30%(2+ (v1)?).

(59)

(60)

(61)

of position dependence scalar functions wl()? ), which makes clear the centrifugal-type corrections (propor-
tional to w?) in the local rotational frame. Using this set, we may further obtain compact operator form of
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the FW Hamiltonian (55) to second order in ¢ beyond the *hypothesis of locality *. Particularly, keeping
only the linear terms (@-X) and up to O(p?), the FW Hamiltonian finally becomes

V4 o -
HFW%Bmeff""_Bﬁﬁz_w'L_Vaw

62
+V(Ua,p) + V(onl,p) + O(Qg)v ( )
provided,
= m 1+ B + 16+ )]
Zp =1+ 2v2001 + *(4 + 207),
Vaw = WUJXUX' [\/59(1 - %w2) + %Q2’U1(1 - %w2)] ) (63)

Vivap) = fnf[l + 022+ 0})] 7 (@x p),
20 —
V(an,p) - % g - (Vvl X ﬁ),

where meg is the mass correction (O(o?))- gravitational - type energy shift; Z,5?/2m is the kinetic term
renormalization (O(?)) - curvature/acceleration dependence; — - L is the rotational coupling - O(°) -
inertial frame rotation; —V,, is the spin-rotation (O(0)-O(0?)) - coupling to rotating frame; Vioa,p) is the
spin—acceleration (O(")-O(¢?)) - generalized Thomas precession; Viovu, p) is the gradient /spin-momentum
(O(p)) - inhomogeneous field correction.

4. Concluding remarks

In this section we briefly highlight the key points of present report. This is the second of three pa-
pers that explore the possibility of quantum mechanical inertial properties of the Dirac particle beyond
the “hypothesis of locality ". This is done within the framework of the Master Space-Teleparallel Super-
gravity (M S,-TSG) (Ter-Kazarian, 2025a) theory, which we recently proposed taking into account inertial
effects (Ter-Kazarian, 2026). In Ter-Kazarian (2025b) (first article of three), we derived the general Dirac
equation in an accelerated and rotating frame of reference beyond the™ hypothesis of locality “. This equation,
however, contains also residual imaginary terms, which are artifacts that due to coordinate transformations
in the non-inertial frames. To eliminate to all orders these terms, in present article we apply the standard
techniques used in relativistic quantum mechanics and quantum field theory, where non-Hermitian terms
can be removed via suitable similarity transformations. We begin by removing a purely imaginary term
in (3) via a similarity transformation to first order in BCH expansion. According to our strategy (10), we
next redefine the wave function and perform the second similarity transformation on the Dirac Hamiltonian,
provided that we choose S such that the imaginary potential is eliminated to first order. This standard
method allows to choose a physically more suitable reference frame. The expectation values of physical
observables remain real. No imaginary contamination remains in physical quantities. Thus the energy,
momentum, probability, etc. remain real and consistent. We are also interested in low-energy properties,
avoiding solutions with negative energy. In the method employed for reducing the Hamiltonian (/1) to non-
relativistic two-component form, in order to decouple the positive and the negative energy states, we used
an approximate scheme of the FW canonical transformation of the Dirac Hamiltonian for a free particle.
This is made by an infinite sequence of FW-transformations leading to a deformed Hamiltonian, which is
an infinite series in powers of (1/m). Hence the reduced deformed Hamiltonian can be recast into the form
(dropping triple primes) (45). Evaluating the operator products to the desired order of accuracy, we find the
deformed, non-relativistic Hamiltonian (55). We then find the inertial effects for a massive Dirac fermion
in non-relativistic approximation, which are displayed beyond the *hypothesis of locality * as extended (de-
formed) versions of the standard effects: extended redshift (Bonse-Wroblewski — COW); extended Sagnac
type effect (Page-Werner et al.); extended spin-rotation effect (Mashhoon); extended redshift effect of kin.
energy; extended new inertial spin-orbit coupling. Taking the flat-space limit of full FW Hamiltonian (55),
we obtain the low-energy FW Hamiltonian in the two-component (Pauli) limit (57), which matches the
known low-energy FW Hamiltonian (58). Including higher-order spin—inertial terms, we get perfect agree-
ment with the known low-energy limit of the standard Dirac Hamiltonian in an accelerated and rotating
frame. Expanding further the deformation coefficients into the series in powers of the o(§), several new
effects will rather appeared involving spin, angular momentum, proper linear 3-acceleration @ and proper
3-angular velocity & in various mixed combinations.
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Appendices

Appendix A Dirac equation in non-inertial frame beyond the hypothesis
of locality: Revisited

We consider only mass points, then the non-inertial frame of reference in the Minkowski space of SR
is represented by a curvilinear coordinate system, since it is conventionally accepted to use the names
“curvilinear coordinate system” and “non-inertial system’ interchangeably. In the Minkowski spacetime
of SR in Cartesian coordinates T = (z°, 7", 72, 73), the Dirac equation for a massive fermion reads (Ter-
Kazarian, 2025b)

iy D,V = mW, (64)

with the Dirac matrices v*'. Here we will essentially follow Bjorken-Drell Bjorken & Drell (1964), in
particular we use its conventions for the Dirac matrices: v° = 8 and 7* = Ba’. In its most fundamental
form, the Dirac equation in a locally accelerated and rotating frame of reference of the observer, obtained
from first principles, is a generalization of the equation (64):

"Dy ¥ = mV, (65)

where the anholonomic Dirac matrices are defined by +# = e Y, and yEyY 4+ AP~ = 207 The partial
derivative in the Dirac equation is simply replaced by the covariant derivative

Dy = 0y + Ty, (66)

where the quantities I'(;) are related to the connection coefficients. The latter can be written in terms
of the object of anholonomicity of the commutation table for the anholonomic frame. The components of
anholonomicity (the structure-constants) read
A . M, v AN a5 N
Ce) = ) Co One v = 0ve 7). (67)
Rewrite the anholonomic frame vectors in terms of coordinate basis
_ -1 ko) _ 1 ok
6(6) = bgl (60 —71)1 Ck) = bO (80 —v 8k) , (68)
eq = by “e; = by 0,
J , . A S

provided, denote b—f =v) = —b4vj v/ = (&J x X)?. To lower the upper index by a metric 053’ using an

orthogonal basis 0 = (diag+1, — the structure-constants become C(ﬂ)(,;)(,;)

—1),t
N C(Azu) (- Hence, by virtue of ( ) and (67), we summarize all non vanishing components Coyoi)

=0,.
(P)(N)
of the anholonomicity as follows:
ans = = raas = L0,
C(O)(Z)(O) - C(Z)(U)(O) - bl_al 81 In b07
= oA e = GV s
Cone = ~CHo6 = by _+1v (Vb1 )dij, (69)
C(i)(})(;;? = —Ci6yiy = —(0iby )b

000y Ciyiyoy = Crpmy = 0-

The connection components defined with respect to the anholonomic frame (68) read

Ly - (70)
1 .
= 2Cxmm T Cone ~ Cormm)-

Based on (09), it is straightforward to calculate the connection coefficients:

T o6 = 50 mbo,
ey = 2 (Bh0; — 9;0)
2*432'% %[(3174) — (9jba)vi] ,

—(0ib7 )0k + (0567 )ik (71)
)6) = Lo =~z (00 +95%)

(Vb1 )61 = — 54 [(0iba)v; + (95ba)v3)]

(Vb D%, Taysye) = Laem =0
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In the limit of the hypothesis of locality: (w) — 1, the deformation coefficients by, b3 = bo/(1 + @ - X), by
tend to 1, and hence the (69) and (71) restore the standard contributions by Hehl et al. (1991). Actually,

Fooo =Cono (72)
= Toi6 = Co16 = ey
Since [a; = gi;a’ = —6;;07 = —a’, then
Faio Lo = _(1+aa.X') (73)
Next,
” — O;v _ 8i’l)k
©®G — Loij (1+&J)2) — Ik atax) 74
= 0. 8kmiwm _ amijwm _ Eijmwm ( )
~YkataxX) T T (+ax)  (1+ax)

All other components vanish T’ Goi = I'y59 = 0. The quantities

i = =1 T 50y (75)

that appear in the Dirac equation can now be calculated by means of (71) and the six matrices 0 of the
infinitesimal generators of the Lorentz group

A7), (76)

After calculation and simplification of (75), we find

Q= 1
Ly = @+ iy - 7, (77)
provided,

6_7:1 = #(V]Hbo),
W1 = % [b4w $(Vinby) x ],
Ak = Qi = 4b [(3 ba)vy + (Okba)vi] (78)
—7(?) Vbl )(Lk,
wik = —wk; = 2ewi(0ib7 1)),

where €;;;, is the three-dimensional Levi-Civita symbol with €123 = 1. Collecting (66) and (77) together, we
find for the deformed spinor covariant derivatives

D(G):%{%—ﬁwo.a—mf—iws-g}, we = by — 3V (by) x @

° T (79)
D(;) :b11%+ai-a+zwi-a,
where the orbital (L) and spin (S) operators respectively have the form
F — (¥ O\ _ (¥ J_— 1=

In the standard limit, (7) — 1, of the hypothesis of locality, the deformation coefficients b1, b3, by, tend to
1, so that the (79) and (80) restore the results of Hehl & Ni (1990):

P T4 §= (R x4l
J—>J—L+Sf(X><éa)Z)~l—26;, ) (81)
— 1 rd 1> = N i _

Substituting (79) into (65) and multiplying it by v°3bg, we obtain the explicit form of the Dirac equation
beyond the hypothesis of locality for an observer in a reference frame that is accelerated with a proper linear
3-acceleration @ and rotating with proper 3-angular velocity &:

{i@o—iﬁ(Vbo-o?)—l—cU-f/—i- B+ S —boby (@ - P) + 5(Vba — 3babgVby ') - ¥

(82)
—ibg(& - Vb 1)} U = boSm.
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