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Abstract

The method of decomposition of the resulting field (DRF) developed by the author is used to further
simplify the solution of the diffuse reflection problem (DRP) from a semi-infinite medium in the case of
redistribution of radiation by frequencies and directions. Taking into account the presence of a natural
combination of frequency and angle of absorption of a quantum makes it possible to bring the solution
of the problem to its complete simplification. The search for eigenfunctions and eigenvalues of DRP that
depend on three independent variables and satisfy the joint system of integral equations with nonlinearity
of the fifth degree and algebraic equations of the second degree is reduced to the determination of two
types of new auxiliary functions from the system of nonlinear integral equations. The first type depends
on only one argument with the second degree of nonlinearity of the equations, and the second one on three
arguments with the third degree of nonlinearity of integral equations. The accompanying systems of alge-
braic equations that determine the corresponding eigenvalues are also simplified: instead of nonlinearity
of the second degree, linear systems are obtained.

Keywords: radiative transfer, diffuse reflection problem, redistribution of radiation by frequencies and
directions, Ambartsumian’s nonlinear functional equation, eigenfunctions in radiative transfer, decomposi-
tion of the resulting field

1. Initial task

In a recent paper by the author (Pikichyan, 2023c) , the method of decomposition of the resultant field
(DRF) was applied to the solution of classical diffuse reflection problem (DRP) of radiation from a semi-
infinite medium in the case when there is a redistribution of radiation by frequencies and directions during
the elementary act of scattering. The following notations are adopted: r - the redistribution function of
radiation by frequencies and directions in a single act of scattering; ρ - the function of diffusely reflected
radiation from a semi-infinite scattering-absorbing medium in the probabilistic representation; µ, µ′ - the
cosines of the angles of the quanta reflected from the medium and incident on its boundary, respectively,
relative to the outer normal of boundary; φ, φ′ - the corresponding azimuths, and x, x′ - the corresponding
dimensionless frequencies. In the theory of radiant energy transfer the standard relations are well known
for this general case:

r
(
x, x′; γ

)
= r

(
x, µ;x′, µ′;φ− φ′) , γ = −→n · −→n ′

, −→n ≡ (µ, φ ) , µ ∈ [0, 1] , φ ∈ [0, 2π]

r
(
x,−µ;x′,−µ′;φ− φ′) = r

(
x,+µ;x′,+µ′;φ− φ′) ,

r
(
x,+µ;x′,−µ′;φ− φ′) = r

(
x′,+µ′;x,−µ;φ′ − φ

)
,

ρ
(
x, µ;x′µ′;φ− φ′)µ′ = ρ

(
x′µ′;x, µ;φ′ − φ

)
µ. (1)

The analogue of Ambartsumian’s nonlinear functional integral equation in this case is written in the
form
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4π

λ
µ′

(
α (x)

µ
+
α (x′)

µ′

)
ρ
(
x, µ;x′µ′;φ− φ′) = r

(
x, µ;x′ − µ′;φ− φ′)+

∫ +∞

−∞

∫ 2π

0

∫ 1

0
r
(
x, µ;x′′′, µ′′′;φ− φ′′′) ρ(x′, µ′;x′′′, µ′′′;φ′ − φ′′′

)
dµ′′′dφ′′′dx′′′+

∫ +∞

−∞

∫ 2π

0

∫ 1

0
ρ
(
x, µ;x′′, µ′′;φ− φ′′) r (x′′, µ′′;x′, µ′;φ′′ − φ′) dµ′′dφ′′dx′′ + (2)

∫ +∞

−∞

∫ 2π

0

∫ 1

0

∫ +∞

−∞

∫ 2π

0

∫ 1

0
ρ
(
x, µ;x′′′, µ′′′;φ− φ′′′) r (x′′′,−µ′′′;x′′, µ′′;φ′′′ − φ′′)×

ρ
(
x′, µ′;x′′µ′′;φ′ − φ′′ ) dµ′′dφ′′dx′′dµ′′′dφ′′′dx′′′ ,

Here the value α (x) is an absorption profile.

2. Initial solution

To solve equation (2), by means of the DRF method the following value was introduced:

K
(
x, µ;x′, µ′;φ− φ′) ≡ µ′

(
α (x)

µ
+
α (x′)

µ′

)
ρ
(
x, µ;x′µ′;φ− φ′) ,

K
(
x, µ;x′, µ′;φ− φ′) = K

(
x′, µ′;x, µ;φ− φ′) , (3)

and then equation (2) was rewritten for the introduced symmetric kernel – K. For a more compact
presentation of further formulas, it is advisable to introduce shortened notations below:

±M ≡ {x,±µ, φ} , A = A {x, µ} ≡ α (x)

µ
, α (+x) = α (−x) ,

K
(
M,M ′) ≡ µ′

(
A+A′) ρ (M,M ′)

)
, K

(
M,M ′) = K

(
M ′,M

)
,

∫ +∞

−∞

∫ 2π

0

∫ 1

0
F1

(
x, µ;x′′, µ′′;φ− φ′′)F2

(
x′′, µ′′;x′, µ′;φ′′ − φ′) dµ′′dφ′′dx′′

≡ F1

(
x, µ;x′′, µ′′;φ− φ′′) ◦ F2

(
x′′, µ′′;x′, µ′;φ′′ − φ′) ≡ F1

(
M,M ′′) ◦ F2

(
M ′′;M ′) . (4)

Then the equation mentioned above for the quantity K (M,M ′) can be recorded compactly - in the
operator form with the help of the relations (2), (3) and (4)

4π

λ
K

(
M,M ′) = r

(
M,−M ′)+ r

(
M,M ′′) 1

µ′′
◦ K (M ′′,M ′)

A′′ +A′ +
K (M,M ′′)

A+A′′
1

µ′′
◦ r

(
M ′′,M ′)+

K (M,M ′′′)

A+A′′′
1

µ′′′
◦ r

(
−M ′′′,M ′′) ◦ 1

µ′′
K (M ′′,M ′)

A′′ +A′ . (5)

In the DRF method, in contrast to the standard method of decomposition of the characteristic of a
single act of scattering (DSA method), which is widespread in the theory of radiative transfer, is used
the opportunity of approximate representation of the introduced symmetric (3) and positive K > 0 nucleus
K (M,M ′) directly through its eigenfunctions and eigenvalues. There is no need for a preliminary expansion
or any special representation of the value r (M,M ′′) describing the elementary act of scattering. To apply
the DRF method, you first set the problem on eigenfunctions and eigenvalues

νiβi (M) = K
(
M,M ′) ◦ βi (M ′) , βi (M) ◦ βj (M) = δij , (6)
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and then the desired kernel in the Nth approximation was represented in terms of its eigenfunctions βj (M)
and eigenvalues νj by bilinear decomposition

K
(
M,M ′) ∼ KN

(
M,M ′) = N∑

j=1

νjβj (M)βj
(
M ′) . (7)

From expressions (5)-(7) follows a system of nonlinear integral functional equations to determine the
eigenfunctions of the nucleus KN (M,M ′).

4π

λ
νiβi (M) =

[
r
(
M,−M ′)+ r

(
M,M ′′) ◦ 1

µ′′

∑N
j=1 νjβj (M

′′)βj (M
′)

A′′ +A′

]
◦ βi

(
M ′)+

+

N∑
j=1

νjβj (M)
βj (M

′′′)

A+A′′′
1

µ′′′
◦

[
r
(
M ′′′,M ′)+ r

(
−M ′′′,M ′′) ◦ 1

µ′′

∑N
k=1 νkβk (M

′′)βk (M
′)

A′′ +A′

]
◦ βi

(
M ′)

(8)

The latter system is not difficult to imagine in the form of

4π

λ
νiβi (M) = Zi (M,β) +

N∑
j=1

νjDji

(
M,β3

)
+

N∑
j=1

N∑
k=1

νjνkVjki
(
M,β5

)
(9)

where are the notations taken into account:

Zi (M,β) ≡ r
(
M,−M ′) ◦ βi (M ′) ,

Dji

(
M,β3

)
≡ βj (M)

βj (M
′′)

A+A′′
1

µ′′
◦ r

(
M ′′,M ′) ◦ βi (M ′)+ r

(
M,M ′′) ◦ 1

µ′′
βj (M

′′)βj (M
′)

A′′ +A′ ◦ βi
(
M ′) ,

Vjki
(
M,β5

)
≡ βj (M)βj (M

′′′)

A+A′′′
1

µ′′′
◦ r

(
−M ′′′,M ′′) ◦ 1

µ′′
βk (M

′′)βk (M
′)

A′′ +A′ ◦ βi
(
M ′) . (10)

In order to determine the corresponding eigenvalues, a system of non-linear, but already algebraic equa-
tions follow from expressions (9)

4π

λ
νi = bi +

N∑
k=1

νkcki +
N∑

m=1

N∑
n=1

νmνnfmni , (11)

where indicated:

bi ≡ βi (M) ◦ r
(
M,−M ′) ◦ βi (M ′) ,

cki ≡ 2 βi (M) ◦ βk (M)
1

A+A′′ ◦
1

µ′′
βk

(
M ′′) r (M ′′,M ′) ◦ βi (M ′) ,

fmni ≡ βi (M) ◦ βm (M)βm (M ′′′)

A+A′′′
1

µ′′′
◦ r

(
−M ′′′,M ′′) ◦ 1

µ′′
βn (M

′′)βn (M
′)

A′′ +A′ ◦ βi
(
M ′) . (12)

The final joint system of integral and algebraic equations (9) and (12) in expanded notation was obtained
in the above work (Pikichyan, 2023c). Here, the value of the five independent variables is expressed in terms
of their eigenfunctions that depend on only three independent variables

KN

(
x, µ;x′, µ′;φ− φ′) −→ {

βj (x, µ, φ) , βj
(
x′, µ′, φ′)}

j=1÷N

However, the presence in equations (8) of a combination of frequency and angle, i.e., quantities of the
type A = α (x)/µ is likely to further simplify the solution of the DRP. Indeed, in the more particular
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case of the directionally averaged redistribution function r (x, x′) of radiation by frequencies after the first
simplification step (Pikichyan, 2023b, 2024a)

KN

(
x, µ;x′, µ′

)
−→

{
βj (x, µ) , βj

(
x′, µ′

)}
j=1÷N

,

It was possible to introduce a new variable z = µ/α (x) take another step of simplification (Pikichyan,
2024b) and achieve complete simplification of the solution of the DRP. The required eigenfunctions of the
problem, which depend on two independent variables, were explicitly represented through two new auxiliary
functions by one independent variable

β̃j (x, z) −→ {Qm (x) , Gmj (z)}m=1÷N .

The purpose of this note is to implement a similar simplification also in the more general case considered
here, when in the elementary act of scattering there is a redistribution of radiation, both in frequencies
and directions. Below, based on the format of this publication, the results of the complete simplification of
the solution of the DRP are presented briefly - without derivations of the formulas and the corresponding
cumbersome calculations.

3. Complete simplification of the task

3.1. Final system of equations

It is not difficult to show that the eigenfunctions β̃i (M) from (8) can be explicitly expressed in terms of
the simpler auxiliary functions Q̃m (M) and G̃mj (z) in the form

β̃j (M) =
N∑

m=1

Q̃m (M) G̃mj (z) , (13)

where a single variable z is introduced, combining frequency and direction. The auxiliary functions Q̃m (M),
G̃mj (z) appearing in (13) and the eigenvalues νm necessary for the construction of (7), are determined
together from a unified system of nonlinear integral equations and linear algebraic equations. Indeed, let us
introduce new variables first

z ≡ 1

A
=

µ

α (x)
, ±M ≡ {x,±µ, φ} → {x,± zα (x) , φ } → {x,±z, φ} ≡ ±M̃,

as well as designations:

F
(
M,M ′) = F

(
x, µ;x′, µ′;φ− φ′) = F

(
x, zα (x) ;x′, z′α

(
x′
)
;φ− φ′)

≡ F̃
(
x, z;x′, z′;φ− φ′) = F̃

(
M̃, M̃ ′

)
, f

(
A,A′) = f

(
α (x)

µ
,
α (x′)

µ′

)
= f̃

(
z, z′

)
,

F1

(
M,M ′′) ◦ F2

(
M ′′;M ′) = ∫ +∞

−∞

∫ 2π

0

∫ 1

0
F1

(
x, µ;x′′, µ′′;φ− φ′′)F2

(
x′′, µ′′;x′, µ′;φ′′ − φ′) dµ′′dφ′′dx′′ =∫ 2π

0
dφ′′

∫ +∞

−∞
α
(
x′′

)
dx′′

∫ 1
α(x′′)

0
F̃1

(
x, z;x′′, z′′;φ− φ′′) F̃2

(
x′′, z′′;x′, z′;φ′′ − φ′) dz′ =

2

∫ 2π

0
dφ′′

∫ ∞

0
dz′′

∫
E(z′′)

F̃1

(
x, z;x′′, z′′;φ− φ′′) F̃2

(
x′′, z′′;x′, z′;φ′′ − φ′)α (

x′′
)
dx′′

≡ F̃1

(
M̃ ; M̃ ′′

)
◦ F̃2

(
M̃ ′′; M̃ ′

)
,

F̃1

(
z; z′

)
◦ F̃2

(
M ′) = ∫ ∞

0
F̃1

(
z, z′

)
dz′ 2

∫
E(z′)

α
(
x′
)
dx′

∫ 2π

0
F̃2

(
x′, z′, φ′) dφ′

≡
∫ ∞

0
F̃1

(
z, z′

)
f
(
z′
)
dz′ ≡ F̃1

(
z, z′

)
· f

(
z′
)
,
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f
(
z′
)
≡ 2

∫
E(z′)

α
(
x′
)
dx′

∫ 2π

0
F̃2

(
x′, z′, φ′) dφ′,

∫ ∞

0
F1 (z)F2 (z) dz ≡ F1 (z) · F2 (z) , (14)

where the procedure for reprioritizing integration was used∫ +∞

−∞
. . . dx

∫ 1
α(x)

0
. . . dz = 2

∫ ∞

0
. . . dz

∫
E(z)

. . . dx , E (z) =

{
x : α (x) ≤ 1

z

}
. (15)

Then, after some simple but rather cumbersome calculations, we can come to the final system of joint
definition of auxiliary functions and eigenvalues



4π
λ νiG̃hi (z) = δhi + z

∑N
s=1 νsG̃hs (z)

∑N
l=1

G̃ls(z
′′′)

z+z′′′ · ϱ̃li
(
z′′′, Q̃2

)
Q̃i

(
M̃

)
=

∑N
p=1

[
αr̃−Q̃p︸ ︷︷ ︸ (M̃ ; z′′

)
· G̃pi (z

′′) + r̃+Q̃p︸ ︷︷ ︸ (M̃, z′′
)
· H̃pi

(
z′′, Q̃2

)]
4π
λ νi = C̃i +

∑N
s=1 νsD̃si or νi = Ãi +

∑N
j=1 νjB̃ji

(16)

In expression (16) there are notations:

ϱ̃li

(
z′′′, Q̃2

)
= Q̃+

l Q̃
−
i︸ ︷︷ ︸ (z′′′) ≡ 2

∫
E(z′′′)

dx′′′
∫ 2π

0
Q̃m

(
x′′′, z′′′, φ′) Q̃i

(
x′′′,−z′′′, φ′′′) dφ′′′

αr̃−Q̃p︸ ︷︷ ︸ (M̃ ; z′′
)
≡ 2

∫
E(z′′)

α
(
x′′

)
dx′′

∫ 2π

0
r̃
(
x, z;x′′,−z′′;φ− φ′′) Q̃p

(
x′′, z′′;φ′′) dφ′′,

r̃+Q̃p︸ ︷︷ ︸ (M̃, z′′
)
≡ 2

∫
E(z′′)

dx′′
∫ 2π

0
r̃
(
x, z;x′′, z′′;φ− φ′′) Q̃p

(
x′′, z′′;φ′′) dφ′′,

H̃pi

(
z′′, Q̃2

)
=

N∑
h=1

N∑
m=1

R̃ph

(
z′′, z′

)
z′G̃mi

(
z′
)
· αQ̃hQ̃m︸ ︷︷ ︸ (z′) ,

R̃hl

(
z, z′

)
=

∑N
j=1 νjG̃hj (z) G̃lj (z

′)

z + z′
.

αQ̃hQ̃m︸ ︷︷ ︸ (z′) ≡ 2

∫
E(z′)

α
(
x′
)
dx′

∫ 2π

0
Q̃h

(
x′, z′, φ′) Q̃m

(
x′, z′, φ′) dφ′ ,

C̃i ≡
∫ ∞

0

dz

ωi (z)
, D̃si ≡

N∑
l=1

∫ ∞

0
G̃ls

(
z′′′

)
ϱli

(
z′′′, Q̃2

)
ω̃si

(
z′′′

)
dz′′′ ,
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ωi (z) ≡
N∑

h=1

G̃hi (z), ω̃si

(
z′′′

)
≡

∫ ∞

0

zωs (z) dz

(z′′′ + z)ωi (z)
,

Ãi ≡

∫
Q̃i

(
M̃

)
dM̃ −

∑N
p=1 G̃pi (z

′′) · ψp (z
′′)∑N

p=1 G̃pi (z′′) · χp (z′′)
, ψp

(
z′′
)
≡

∫
αr̃−Q̃p︸ ︷︷ ︸ (M̃ ; z′′

)
dM̃,

B̃ji =
hji

(
z′, Q̃2

)
· 1
z′+z′′ · z

′′∑N
p=1 G̃pj (z

′′)χp (z
′′)∑N

p=1 G̃pi (z′′) · χp (z′′)
,

hji
(
z′, Q2

)
≡

N∑
l=1

N∑
m=1

G̃lj

(
z′
)
G̃mi

(
z′
)
αQ̃lQ̃m︸ ︷︷ ︸ (z′) , χp

(
z′′
)
≡

∫
r̃+Q̃p︸ ︷︷ ︸ (M̃, z′′

)
dM̃.

3.2. The final solution to the problem of DRP

After defining the auxiliary functions G̃hi (z) and Q̃h (M) with accounting (13), the final solution of the
initial DRP is given explicitly

ρ
(
M,M ′) = z

α (x′)

N∑
h=1

N∑
l=1

Q̃h

(
M̃

)
R̃hl

(
z, z′

)
Q̃l

(
M̃ ′

)
, R̃hl

(
z, z′

)
=

∑N
j=1 νjG̃hj (z) G̃lj (z

′)

z + z′
. (17)

In a particular case of a DRP with a directionally averaged redistribution function of radiation by
frequencies, the above results are transferred to those obtained earlier in the work (Pikichyan, 2024b).

4. On the algorithm of numerical calculation of the system

To implement the calculations of the system (16), it seems expedient to propose an algorithm of successive
approximations in the form:

[
G̃(0)

Q̃(0)

]
−→

 C̃(0)

D(0)

ν(0) ≈ C̃(0)

 −→ ν(1) −→


ν(1)

G̃(0)

Q̃(0)

 −→ G̃(1) −→


ν(1)

G̃(1)

Q̃(0)

 −→ Q̃(1) −→


ν(1)

G̃(1)

Q̃(1)

 −→ ν(2)··· ,

where first in some suitable way some zero approximation G̃(0), Q̃(0) must be chosen which satisfies to the
orthonormalization condition in the form of

N∑
h=1

N∑
m=1

G̃hi (z) G̃mj (z) · αQ̃hQ̃m︸ ︷︷ ︸ (z) = δij (18)

arising from (6) and (13).
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5. Conclusion

In conclusion, we will only emphasize that the introduction of the DRF method (Pikichyan, 2023a,
Pikichyan, 2023b, Pikichyan, 2023c, Pikichyan, 2024a,b) for the solution of DRP is due to an obvious
physical fact. After each successive act of scattering in the medium, the diffuse field of radiation becomes
more and more smooth. It is clear that the naturally ”smoothed” resulting field of diffuse radiation
(formed by multiple scatterings of the quantum) is much easier to imagine directly in the decomposed
form than for the same final purpose the use of the procedure of preliminary decomposition of the
”unsmoothed” value of a single act of scattering. However, the DSA method is still widely used both in
the theory of radiation transfer and in practical applications, i.e., the preliminary decomposition of the
primary field of the unit scattering act is traditionally assumed (see, e.g., (Ambartsumian, 1943, 1944,
Chandrasekhar, 1950, Sobolev, 1963, 1975). In this work, the DRF method was used for further and
complete simplification of the solution of the DRP, when the elementary act of scattering takes into
account the redistribution of radiation both in frequencies and directions. DRP Solution
ρ (x, µ;x′µ′;φ− φ′) which depends on the five independent variables, reduced to finding two types of
auxiliary functions G̃hi (z) and Q̃h (x, z, φ) (h, i = 1÷N) which depend on one and three independent
variables, respectively (see formulas (6)-(8)). Moreover, if the joint system of integral and algebraic
equations of eigenfunctions βj (x, µ, φ) and eigenvalues νj had nonlinearities of the fifth and second degree,

respectively, then the complete solution system presented above with respect to auxiliary functions G̃hi (z)

and Q̃i

(
M̃

)
has nonlinearity of only the second and third degrees, respectively. The algebraic equations

for determining eigenvalues are completely linear here. This simplification was achieved by taking into
account the physical fact of the natural combination of frequency and angle at each elementary act of
absorption. It is well known that such a phenomenon appeared in both the case of isotropic scattering
with a complete redistribution of radiation by frequencies (see, for example, (Ivanov, 1973, Sobolev,
1963)), and in the case of an averaged by directions function of radiation redistribution by frequencies. In
the case of DSA method, the latter is shown in the paper Engibaryan & Nikogosyan (1972a), and in the
case of DRF in the work Pikichyan (2024b). In the general case of redistribution of radiation by
frequencies and directions using the DSA method, this is shown in the paper Engibaryan & Nikogosyan
(1972b), and by the DRF method in this note.
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