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Abstract

We present the use of the scikit—learn DBSCAN clustering code as a machine learning tool to test
the membership and integrity of apparent open clusters to distinguish asterisms from real open clusters in
the Gaia DR3 3D data space. For testing means, we studied known Open Clusters NGC 1798 and NGC
6633. In the field of NGC 1798 we accidentally confirmed an Open Cluster LP17. For final analyze, we
processed the 11 open clusters of Dolidze-Jimsheleishvili as the most of them are small having low spatial
density and are hard to confirm as an Open Clusters with other methods. As a result, we report that 3
of them show clustering tendency as the open clusters: DolidzeDzim 6, DolidzeDzim 7 and DolidzeDzim
10.
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1. Introduction

Astronomy generates a large amount of data, thanks to modern-day terrestrial and space telescopes and
superior imaging technologies (Ball & Brunner, 2010; Pesenson et al., 2010). It is a result of the past and
current long duration and multi-wavelength observational surveys: the Sloan Digital Sky Survey or SDSS
(York et al., 2000), which provided with multi-color images of about 1/3 of sky and spectra of millions of
Galactic and extra-galactic objects; Pan-STARRS (Kaiser et al., 2010), the Zwicky Transient Facility (Bellm,
2014), CoRot (Auvergne et al., 2009), ASASS (Pojmanski et al., 2005), Super WASP (Pollacco et al., 2006),
OGLE (Udalski et al., 2015), Kepler (Borucki, 2016) and TESS (Ricker et al., 2015) obtained the time-series
observations of numerous asteroids, variable stars, supernovae, AGN and more.

But one of the most productive space mission is the ESA Gaia (Gaia Collaboration, et al., 2016) which has
already cataloged accurate positions, proper motions, parallaxes, photometry and spectra for over a billion
stars in our Galaxy. Such a rich data is useful for different applications: charting three-dimensional map of
the Milky Way, analyze of stellar properties (temperatures, metallicity, etc.), study of Galaxy structure and
dynamics and many more.

Special interest is raised for searching for unknown open clusters and Galactic spiral arm sub-structures
(Cantat-Gaudin et al., 2020; Castro-Ginard et al., 2018; Piatti et al., 2022) using the Gaia multi-star and
multi-parameter catalog. However, analyzing this massive archive of information is an impossible mission
for astronomers if special automated computational methods or Al tools are not involved.

The goal of present work is to use the Machine Learning algorithms to check the spatial clustering proba-
bility of small and sparsely populated apparent open clusters using the Gaia DR3 data (Gaia Collaboration,
et al., 2023), which sometimes hard to distinguish from asterisms.

2. Open Clusters vs Asterisms

As a sample of candidate clusters, we selected 11 Open Clusters (OC) of Dolidze and Jimsheleishvili
(Dolidze & Jimsheleishvili, 1966). The main parameters of these OCs are listed in Table 1. According to the
authors, the clusters consist of up to 15 bright stars, each having magnitude range between 7 - 12 magnitudes.
The angular sizes of the clusters vary between 12 - 34 arcmin.
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Table 1. Dolidze-Jimsheleishvili Open Clusters

Name RA DEC Angular size, Number Magnitude
(J2000)  (J2000) arcmin of stars range
DolidzeDzim 1 02:47:30 +17:16:00 12.0 12 8.5-11
DolidzeDzim 2 05:23:09 +11:25:47 12.0 12 9-10.5
DolidzeDzim 3 05:33:31 +26:31:30 15.0 10 9-11.5
DolidzeDzim 4  05:35:54 +25:57:00 28.0 15 6.5-9.5
DolidzeDzim 5  16:27:20 +38:01:58 27.0 7 9-11
DolidzeDzim 6  16:45:24 +38:21:00 17.0 5 9-12
DolidzeDzim 7 17:11:20 +15:28:43 20.0 6 10
DolidzeDzim 8  17:26:22 +24:12:23 14.0 6 8.5-9.5
DolidzeDzim 9  18:08:47 +31:33:18 34.0 15 8.5-11
DolidzeDzim 10 20:05:21 +40:31:25 20.0 12 8.5-11
DolidzeDzim 11 20:51:09 +35:53:07 13.0 12 9.5-12

Two clusters from this list, particularly Nos. 5 and 8, were marked by the authors as “doubtful”. The first
9 clusters in the list were identified using spectral classification of stars in the blue spectral region. These
groups of stars were suspected as clusters due to their resemblance to open clusters of type 2 (relatively small
number of stars in the giant branch) according to the classification scheme proposed by Trumpler (1930).
Two clusters from this group, i.e. Nos. 1 and 8, are removed from the catalogue of Dias et al. (2002) on the
basis of the study by Archinal & Hynes (2003).

The Dolidze and Jimsheleishvili clusters were also analyzed by Tadross (2009) using the color-magnitude
diagrams (CMD) of 2MASS photometry. The ages, metallicities, distances, and values of reddening were
derived by fitting color-magnitude diagrams to the theoretical isochrones for all 11 clusters. The diameters
of the clusters were also estimated. In a CMD fitting procedure, the exact location of the giant branch plays
a crucial role. In this work, however, the giant branch was determined only by the colors of a few giants,
without any discussion about their membership status.

Kazlauskas et al. (2013) examined the reality of the open Dol-Dzim 5 cluster using available photometric,
spectroscopic, and astrometric information. They have shown that this concentration of stars could hardly
be regarded as a physical ensemble and is most likely an asterism of several bright stars.

To study this problem with alternative method, we collected equatorial coordinates and parallaxes of stars
down to 19th magnitudes from the Gaia DR3 catalogue (Gaia Collaboration, et al., 2023) in the fields with
centers equal to Dolidze and Jimsheleishvili Open Clusters’ centers and with diameters equal to 1 degree.

To find the possible grouping in these star lists, we used the Density-Based Spatial Clustering of Ap-
plications with Noise or DBSCAN (Ester et al., 1996) method from the scikit-learn Machine Learning
Python package (Pedregosa et al., 2011) which finds core samples in regions of high density and expands
the clusters from them in a 3D space. This method was used successfully by many authors to find spatial
overdensities or cluster membership determinations (e.g. Caballero & Dinis, 2008; Gao et al., 2014, 2017).

The DBSCAN algorithm views clusters as areas of high density separated by areas of low density. Due
to this rather generic view, clusters found by DBSCAN can be any shape, as opposed to k-means, which
assumes that clusters are convex shaped. The central component of the DBSCAN is the concept of core
samples, which are samples that are in areas of high density. A cluster is therefore a set of core samples,
each close to each other (measured by some distance measure) and a set of non-core samples that are close
to a core sample (but are not themselves core samples). There are two parameters to the algorithm, MinPts
and e, which formally define what we mean when we say dense. Higher MinPts or lower € indicate a higher
density necessary to form a cluster.

While the parameter MinPts primarily controls how tolerant the algorithm is towards noise (on noisy
and large data sets it may be desirable to increase this parameter), the parameter € is crucial to choose
appropriately for the data set and distance function and usually cannot be left at the default value. It
controls the local neighborhood of the points. When chosen too small, most of the data will not be clustered
at all (and labeled as -1 for “noise”). When chosen too large, it causes close clusters to be merged into one
cluster, and eventually the entire data set to be returned as a single cluster. Some heuristics for choosing
this parameter have been discussed in the literature, for example, based on a knee in the nearest neighbor
distances plot.
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Figure 1 shows DBSCAN algorithm logical flow chart.
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Figure 1. Logical flow chart of the DBSCAN algorithm.

3. Test Analyze

To test the potential of the DBSCAN method, we used it for well-known Open Clusters, NGC 1798
discovered by Edward Barnard in 1885 and NGC 6633 discovered in 1745 by Jean-Philippe de Chéseaux.

Figure 2. The CDS star maps of well-known Open Clusters, NGC 1798 (left) discovered by Edward Barnard
in 1885 and NGC 6633 (right) discovered in 1745 by Jean-Philippe de Chéseaux.

Table 2 shows the main parameters of the Open Clusters NGC 1798 and NGC 6633.

Figure 3 and Figure 4 show the DBSCAN clustering results plotted in 3D graph (top right) with RA
along X axes, DEC along Y axes and distance along Z axes. The subplot in the top left part of the figures
show apparent map drawing of all the stars. The bottom left and right subplots show distribution of stars
RA vs Distance and DEC vs Distance 2D spaces. The clusters found by the DBSCAN are marked with dark
colors, while field stars classified by the DBSCAN not connected with the potential clusters, are marked with
a light brown color.

The figures clearly show that both clusters are found by the DBSCAN in the correct distances, though
there are groups of field stars overlaid on these clusters, but are located far from the clusters itself and are
not connected with them.

Kapanadze G. et al. 42
doi: https://doi.org/10.52526/25792776-25.72.1-40


https://doi.org/10.52526/25792776-25.72.1-40

Machine Learning Methods used to Distinguish Open Clusters from Asterisms using Gaia DR3 data

Table 2. main parameters of the Open Clusters NGC 1798 and NGC 6633.

NGC 1798 NGC 6633
RA, DEC (J2000) 05:11:39, +47:41:30 18:27:31, +06:33:59
Galactic long. & lat. 160.70, 4+4.85 36.09, +8.29
Angular size, arcmin 8.3 27
Distance, pc 3550 385
Size, pc 10 5
Members 161 90
Sky Map of NGC_1798 3D Projection
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Figure 3. The DBSCAN clustering result plot for NGC 1798. The small group of stars marked by dark-red
color centered at about RA = 78.2°and DEC=+47.9°and at a distance of around 800 pc exactly fits with
the Open Cluster LP17 (Loktin & Popova, 2017).

In the field of the OC NGC 1798 we see another group of stars marked by the DBSCAN with dark red
color and centered at about RA = 78.2°and DEC=+47.9°and at a distance of around 800 pc. This group
fits perfectly with Open Cluster LP17 (Loktin & Popova, 2017) and did not intend to find it at all from
the beginning. In addition, this finding clearly emphasizes the perfect potential of DBSCAN in clustering
research.

4. Results and Discussion

We analyzed with the same DBSCAN algorithm all Dolidze-Jimsheleishvili Open Clusters. First of all,
it should be emphasized that no one of the clusters clearly shows the high probability clustering tendency,
though 3 of them could be considered as potential open clusters. In this work, we selected the following intial
parameters: MinPts = 6 and € = 0.3. Figures 5 and Figure 6 show the results of the DBSCAN analyze for
the clusters Dolidze-Dzim 2 (Figure 5) and Dolidze-Dzim 3 (Figure 6) which we consider to classify rather
as asterisms, but not open clusters.

The analyzing of the DBSCAN results for all 11 Dolidze-Dzim clusters, we consider that 3 of them show
potential clustering tendency: Dolidze-Dzim 6, Dolidze-Dzim 7 and Dolidze-Dzim 10. The figures below
show corresponding plots from the DBSCAN. Further analyze is needed to find if other parameters including
color-magnitude diagrams, metalicities, and especially proper motions of the stars showing positive clustering
also tend to the same grouping.
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Figure 4. The DBSCAN clustering result plot for NGC 6633.

Figure 5. The DBSCAN clustering result plot for Dolidze-Dzim 2.

Kapanadze G. et al. 44
doi: https://doi.org/10.52526/25792776-25.72.1-40


https://doi.org/10.52526/25792776-25.72.1-40

Machine Learning Methods used to Distinguish Open Clusters from Asterisms using Gaia DR3 data

Distance, pc

Figure 6. The DBSCAN clustering result plot for Dolidze-Dzim 3.

Figure 7. The DBSCAN clustering result plot for Dolidze-Dzim 6.
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Figure 8. The DBSCAN clustering result plot for Dolidze-Dzim 7.
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Figure 9. The DBSCAN clustering result plot for Dolidze-Dzim 10.
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