ФИЗИЧЕСКАЯ ХИМИЯ

О. А. Чалтыкян, чл.-корр. АН Армянской ССР, М. С. Чобанян, Дж. Г. Чшмаритян и Н. М. Бейлерян

Влияние некоторых добавок на скорость полимеризации винилацетата в эмульсии при доступе воздуха, инициированной системой персульфат + триэтаноламин

(Представлено 30/VI 1967)

Ранее нами было установлено ускоряющее действие триэтаноламина на инициирование персульфатов эмульсионной полимеризации винилацетата (ВА). Ввиду того, что триэтаноламин кроме атома азота содержит в молекуле также спиртовые группы, а винилацетат может содержать примеси, воздействующие на спиртовые группы, было интересно изучить влияние метанола, метилацетата, уксусной кислоты, ацетона на скорость полимеризации винилацетата в эмульсии, инициированной персульфатом калия в отсутствии и в присутствии триэтаноламина. Стабилизатором эмульсии служил частично омыленный поливинилацетат.

1. Влияние количества метанола на скорость полимеризации ВА, инициированной персульфатом калия. Опыты ставились при 60°С, так как до 55°С в течение 4 часов и в присутствии 20% метанола (от общего объема эмульсии) процесс не протекает, а при 70°С процесс протекает очень быстро. Данные приведены в табл. 1.

Таблица 1
Скорость эмульсионной полимеризации ВА, инициированной персульфатом калия в присутствии различных количеств метанола при 60°C

0/0 H	Процент полимеризации за время (часы)			
MeOH	1	2	3	4
10	5,6	6,5	11,6	27,7
15	15,1	25,2	46,0	89,5
20	14,0	35,2	60,3	93,0
25	24,0	42,7	85,2	93,5

Таблица 2 Скорость эмульсионной полимеризации ВА, инициированной персульфатом калия при рН=10,3 и при 60°C

0/0 F	Процент полимеризации за время (часы)			
MeOH	1	2	3	4
5	20,0	31,3	76,1	98,1
10	30,6	44,5	78,0	97,3
15	35,0	47,6	89,2	93,2
20	31,3	60,1	91,5	95,0

Как следует из данных табл. 1, с увеличением количестга метанола в эмульсии скорость полимеризации увеличивается.

Ввиду того, что при реакции триэтаноламина с персульфатом калия вначале рН водной фазы порядка ~ 10, влияние количества метанола изучали также в буферированной (водной фазе) эмульсии.

Нетрудно заметить, что в щелочной среде при рН = 10,3 ускоряюшее влияние метанола усиливается.

2. Влияние метилацетата на скорость эмульсионной полимеризации ВА, инициированной персульфатом калия при 60°С. Метилацетат интересен тем, что он не только может быть примесью в ВА, но и, имея группы СН₃, может являться конкурентом винилацетата и с ацетатными группами стабилизатора поливинилацетата в деле захвата свободных радикалов. Данные о зависимости скорости полимеризации ВА от содержания метилацетата приведены в табл. 3.

Таблица 3 Влияние метилацета на скорость эмульсионной полимеризации ВА в присутствии 25% метанола

апе-	Процент полимеризации за время (часы)				
Процент метилаце- тата	1	2	3	4	
0 0,2 0,4 0,6 0,8 1,0	32,3 36,2 33,3 35,3 31,0 34,7	88,7 96,5 96,4 95,3 95,0 95,0	95,9 96,7 96,8 96,6 95,2 94,9	97,7 97,2 97,1 96,6 96,6	

Таблица 4
Влияние добавок метанола на скорость полимеризации ВА в эмульсии, инициированной системой персульфат—

рнт ола	Процент полимеризации за время (часы)				
Процент	1	2	3	5	
10	62,1	85,5	94,1	97,0	
15	56,2	85,8	87,7	93,6	
20	46,0	72,5	90,3	94,1	

Из данных табл. З следует, что малые добавки метилацетата очень слабо влияют на скорость полимеризации. Однако метилацетат в концентрациях $>0,2^{0}/_{0}$ спижает агрегативную устойчивость образовавшегося латекса.

3. Влияние метанола на скорость эмульсионной полимеризации ВА, иниципрованной системой персульфат + триэтаноламин. Влияние метанола изучалось при постоянном соотношении $(A)_0/(P)_0=2$ и при 60° С. Полученные данные приведены в табл. 4.

1/13 данных табл. 4 следует, что при наличии триэтаноламина увеличение количества метанола приводит к уменьшению скорости полимеризации.

4. Влияние других примесей на скорость эмульсионной полимеризации BA, инициированной системой персульфат+ триэтаноламин в присутствии $20^{0}/_{0}$ метанола. Изучалось влияние метилацетата, ацетата натрия, уксусной кислоты и ацетона. Данные приведены в табл. 5.

Наименование при-	Количество	Процент полимеризации за время (часы)			
	в процентах	.1	2	3	4
Метилацетат · · · · Ацетат натрия · · ·	0,5	68 79	91 92	94	95,5 95,0
Уксусная кислота	1	79,5	87,1	89,6	91,5
Ацетон	1,7	3 5	89	93,2	94
	0,5	79	91,6	92	95

В этих условиях добавка около 1^{0} метилацетата к эмульсии не только несколько увеличивает скорость полимеризации, но также увеличивает агрегативную устойчивость латекса до -40° С.

Изучение влияния метанола на иницинрующую способность одного персульфата показало, что до 55°С винилацетат не полимеризуется в эмульсии при доступе воздуха. Метанол, в отличие от других моногомных спиртов, не вызывает распада персульфата до 59°С. Однако согласно данным Бартлетта и Котмана (1) при температуре около 70°С параллельно с термическим распадом персульфата протекает также индуцированный распад последнего под действием метанола.

По-видимому, увеличение скорости полимеризации ВА, инициированной одним только персульфатом в присутствии метанола, обусловлено дополнительным, индуцированным распадом первого.

Как следует из данных табл. 2, в щелочной среде инициирующая способность персульфата в присутствии метанола больше. Этот факт находится в согласии с данными Кольтгофа и Миллера (2), установившими увеличение скорости гомолиза персульфата по мере увеличения рН среды.

Однако метанол снижает инициирующую способность системы персульфат | триэтаноламин. Можно было предположить, что с увеличением количества метанола увеличивается растворимость триэтаноламина в мономере, т. е. уменьшается фактическая концентрация триэтаноламина в водной фазе, где находится персульфат.

Интересно отметить влияние метилацетата. Он почти не влияет на скорость полимеризации ВА в эмульсии, но при его концентрации $<0,2^{0}/_{0}$ он повышает морозостойкость латекса.

Это, по-видимому, обусловлено тем, что в присутствии метилацетата уменьшается вероятность графт сополимеризации вследствие передачи цепи водородом метильной группы ацетатных групп образовавшегося поливинилацетата (или эмульгатора-поливинилспирта).

Выводы. 1. Установлено, что в отсутствие триэтаноламина метанол ускоряет полимеризацию ВА в эмульсии, когда инициатором служит один только персульфат.

2. В щелочной среде и в присутствии метанола скорость полимеризации ВА в эмульсии выше, чем в нейтральной или слабокислой

среде.

3. Несмотря на то, что метилацетат в очень малой степени меняет скорость полимеризации, инициированной либо одним персульфатом, либо системой персульфат-триэтаноламин, однако он значительно увеличивает морозостойкость полученного латекса.

Ереванский государственный университет

2. Հ. ՉԱԼԹԻԿՑԱՆ, Հայկական ՍՍՀ ԳԱ թղթակից-անդամ, Մ. Ս. ՉՈՐԱՆՑԱՆ, Ջ. Հ. ՃՇՄԱՐԻՏՑԱՆ և Ն. Մ. ՐԵՑԼԵՐՑԱՆ

Օդի ներկայությամբ պերսուլֆատ+տրիկթանոլամին սիստեմով ճառուցված վինիլացետատի էմուլսիոն պոլիմերման արագության վրա մի քանի ճավելույթների ազդեցությունը

Ուսումնասիրված է մնքանոլի, մենիլացետատի, միջավայրի թH-ի ազդնցությունը միայն _{պերսու}լֆատի և սլերսուլֆատ – տրիէիանոլամին սիստեմների ներկայությամբ էմուլսիայում վինիլացետատի պոլիմերման արագության վրա։

Ուսումնասիրված է նույնպես նատրիումի ացնտատի, քացախանիվի և ացնտոնի հավելույթների ազդեցությունը հիշյալ պրոցեսի արագության վրա մեքանոլի և պերսուլֆատ + տրիէքանոլամին հարուցող սիստեմի ներկայությամբ։ Ցույց է տրված, որ տրիէքանոլամինի րացակայությամբ 60°(-ում ավելացված մեքանոլի քանակի աճին զուդահեռ մեծանում է նաև վինիլացետատի պոլիմերման արադությունը։ Սիստեմում տրիէքանոլամին ունննալու դեպքում մեքանոլը բացասարար մերում, որը և բերում է, որ մեքանոլը ավելացնում է տրիէքանոլամինի լուծելիությունը մոնո-

ման արագության վրա, բայց նա ավելացնում է ստացված պոլիվինիլացետատային սուսպենզիայի

սառցակայունությունը։

ЛИТЕРАТУРА — ԳՐԱԿԱՆՈՒԹՅՈՒՆ

1 П. Бартлетт и И. Котман, J. Am. Chem. Soc. 71, 1419 (1949). 3 И. Кольтгоф и И. Миллер, J. Am. Chem. Soc. 73, 3055 (1951).